3(n-8)-5=10-4/7n

Simple and best practice solution for 3(n-8)-5=10-4/7n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(n-8)-5=10-4/7n equation:



3(n-8)-5=10-4/7n
We move all terms to the left:
3(n-8)-5-(10-4/7n)=0
Domain of the equation: 7n)!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
3(n-8)-(-4/7n+10)-5=0
We multiply parentheses
3n-(-4/7n+10)-24-5=0
We get rid of parentheses
3n+4/7n-10-24-5=0
We multiply all the terms by the denominator
3n*7n-10*7n-24*7n-5*7n+4=0
Wy multiply elements
21n^2-70n-168n-35n+4=0
We add all the numbers together, and all the variables
21n^2-273n+4=0
a = 21; b = -273; c = +4;
Δ = b2-4ac
Δ = -2732-4·21·4
Δ = 74193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-273)-\sqrt{74193}}{2*21}=\frac{273-\sqrt{74193}}{42} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-273)+\sqrt{74193}}{2*21}=\frac{273+\sqrt{74193}}{42} $

See similar equations:

| 6x-5=129 | | x^2+24-144=0 | | 7x+1-4+14=30 | | -82=8(3b+4)-5b | | -7x+23+12x=-2 | | 3400T=600=6a | | 19n=133 | | −10=−14v+14v | | x/3-5-9=15 | | 60+42.95x=5+49.95 | | 7y-2+133=180 | | 90=3x+17+1/2x-5 | | 2/3s+5/6s=20 | | 2(2c+1)−c=−13 | | 7-3j=-2j | | 13k-4=34k=1 | | 3400T=600=5a | | -9(t-2)=4(t-150 | | 8x−12+5x+18=180 | | 2(3x+7)=x-6 | | 8x–2=–9+7x | | 8x-17+5x-16=71 | | -1/2a+3=5 | | -15=10x-40 | | -6x—11=49 | | 20+9n=-18+7n | | 3400T=600=4a | | 3(5c-1)-4=13c+9 | | -6(2n-4)=84 | | 12(4−z)=3 | | -7+v=13 | | 1/5y-3=-16 |

Equations solver categories