3(t2-16)2+19(t2-16)=-6

Simple and best practice solution for 3(t2-16)2+19(t2-16)=-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(t2-16)2+19(t2-16)=-6 equation:



3(t2-16)2+19(t2-16)=-6
We move all terms to the left:
3(t2-16)2+19(t2-16)-(-6)=0
We add all the numbers together, and all the variables
3(+t^2-16)2+19(+t^2-16)-(-6)=0
We add all the numbers together, and all the variables
3(+t^2-16)2+19(+t^2-16)+6=0
We multiply parentheses
6t^2+19t^2-96-304+6=0
We add all the numbers together, and all the variables
25t^2-394=0
a = 25; b = 0; c = -394;
Δ = b2-4ac
Δ = 02-4·25·(-394)
Δ = 39400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{39400}=\sqrt{100*394}=\sqrt{100}*\sqrt{394}=10\sqrt{394}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{394}}{2*25}=\frac{0-10\sqrt{394}}{50} =-\frac{10\sqrt{394}}{50} =-\frac{\sqrt{394}}{5} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{394}}{2*25}=\frac{0+10\sqrt{394}}{50} =\frac{10\sqrt{394}}{50} =\frac{\sqrt{394}}{5} $

See similar equations:

| 3(x-1)+2=0 | | 14x+12=9x-3 | | 2k=-4/7 | | 6x=21/4 | | -6a-7(6a-2)=-322 | | 3(n-1)=6(4n+8) | | 9x-6=9x-27 | | 5r=8=2r | | -28+6x=-2x+52 | | 90+16x-16x^2=0 | | 3x+5=4x^2+x | | 7-(3-|m|)=8 | | 1/3x=21/3 | | 3(x-1+2=0 | | 2y-5y=-9 | | -7=1/4y+2 | | 2p+10÷2=-2 | | -16.8d-12.88=-14d | | 48+12x=72 | | 5x+12x=51000 | | -8(-7r-7)+8=-272 | | 5•n•2=0 | | 80+8x=15x-40 | | 4x+(3x+3)+4x+(3x+3)=(7x-2)+(7x-2)+(2x+4) | | 5x-17=3x-63 | | x^2+109-14x=60 | | x^2-13^2-8=0 | | 12d+17=10d-5 | | 4v+32=8 | | 3p=-9/16 | | 8(x+2)-3(x-4=6(x-7)+8 | | 15p=3+18p |

Equations solver categories