3(t2-9)2+16(t2-9)=-5

Simple and best practice solution for 3(t2-9)2+16(t2-9)=-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(t2-9)2+16(t2-9)=-5 equation:



3(t2-9)2+16(t2-9)=-5
We move all terms to the left:
3(t2-9)2+16(t2-9)-(-5)=0
We add all the numbers together, and all the variables
3(+t^2-9)2+16(+t^2-9)-(-5)=0
We add all the numbers together, and all the variables
3(+t^2-9)2+16(+t^2-9)+5=0
We multiply parentheses
6t^2+16t^2-54-144+5=0
We add all the numbers together, and all the variables
22t^2-193=0
a = 22; b = 0; c = -193;
Δ = b2-4ac
Δ = 02-4·22·(-193)
Δ = 16984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16984}=\sqrt{4*4246}=\sqrt{4}*\sqrt{4246}=2\sqrt{4246}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{4246}}{2*22}=\frac{0-2\sqrt{4246}}{44} =-\frac{2\sqrt{4246}}{44} =-\frac{\sqrt{4246}}{22} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{4246}}{2*22}=\frac{0+2\sqrt{4246}}{44} =\frac{2\sqrt{4246}}{44} =\frac{\sqrt{4246}}{22} $

See similar equations:

| 16-14x=17-8x | | 9x+8x=70-x | | 13x-161=6x-14 | | 9x-8x=70-x | | 9(x+1)-18=2x+12 | | 8x+9x=70 | | 8x-9x=70 | | 8x+9x=x-70 | | 8x+9x=70-x | | 8x-9x=70-x | | 5(x+2)+x2=x(x+5)+10 | | 1/4+x/16=15/16 | | 12-y=208 | | 12-4/3x=4 | | 4x+3x+2x+2x=81 | | 6x-(2x+1)=(-5x+(-(2x-1))) | | 52+(x/2)=180 | | 24-6q=12 | | 3.5x^2-10.5x+2=x^2 | | 9+6(x-7)=6x+(x-3) | | 9f=21​ (12f−2)9, | | f=−0.¯3 | | (2x+5)(12)=(2x+2)(14) | | 1/3(2x-1)=5/4+31/12 | | y-10=-2×+20 | | 0.04x+0.10x(400-x)=0.44x | | y+12=5y=-4 | | -4y=-3y−10 | | 0.32x=0.2 | | 9n=-3+10n | | -8s+4=-9s | | Y=19.95/20x |

Equations solver categories