If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(x+1)(x-1)-x(x+2)=2(x+3)(x+2)
We move all terms to the left:
3(x+1)(x-1)-x(x+2)-(2(x+3)(x+2))=0
We use the square of the difference formula
x^2-x(x+2)-(2(x+3)(x+2))-1=0
We multiply parentheses
x^2-x^2-2x-(2(x+3)(x+2))-1=0
We multiply parentheses ..
x^2-x^2-(2(+x^2+2x+3x+6))-2x-1=0
We calculate terms in parentheses: -(2(+x^2+2x+3x+6)), so:We add all the numbers together, and all the variables
2(+x^2+2x+3x+6)
We multiply parentheses
2x^2+4x+6x+12
We add all the numbers together, and all the variables
2x^2+10x+12
Back to the equation:
-(2x^2+10x+12)
-2x-(2x^2+10x+12)-1=0
We get rid of parentheses
-2x^2-2x-10x-12-1=0
We add all the numbers together, and all the variables
-2x^2-12x-13=0
a = -2; b = -12; c = -13;
Δ = b2-4ac
Δ = -122-4·(-2)·(-13)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{10}}{2*-2}=\frac{12-2\sqrt{10}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{10}}{2*-2}=\frac{12+2\sqrt{10}}{-4} $
| 4x-4=X+34 | | 4x+4=x-34 | | -0.6w=-0.6w-0.4 | | 330=26x | | x15-20=-23 | | 18=3(n+4) | | 18=3(n | | n-8=56 | | 90=26x | | –(1+7x)-6(-7-x)=36 | | -3(x-2)+x=-24 | | 44=26x | | 1.1*x=35.90 | | 5x+8=5+3x | | 30=26x | | 86+72+x=80 | | 4x+4=X+34 | | 8x-12=-2x+28 | | 12+3p=-3 | | 3x-4x=-3+9 | | 8/10x-9/5=4/5 | | 4/9x+5/3=9/3 | | 5p-14=-2(-4p-2) | | F=9c÷5+32+190 | | 1.5y=4+0.5 | | v-92=-13 | | m+-15=-72 | | v/2-8=17 | | -7+6e=2(3e-6)+5 | | 3/4x+2/4=8/4 | | 3/4x+2/4=84 | | q^2+5q+2=-q^2+35 |