If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(x+1)x-5x=12-(6x-7)
We move all terms to the left:
3(x+1)x-5x-(12-(6x-7))=0
We add all the numbers together, and all the variables
-5x+3(x+1)x-(12-(6x-7))=0
We multiply parentheses
3x^2-5x+3x-(12-(6x-7))=0
We calculate terms in parentheses: -(12-(6x-7)), so:We add all the numbers together, and all the variables
12-(6x-7)
determiningTheFunctionDomain -(6x-7)+12
We get rid of parentheses
-6x+7+12
We add all the numbers together, and all the variables
-6x+19
Back to the equation:
-(-6x+19)
3x^2-2x-(-6x+19)=0
We get rid of parentheses
3x^2-2x+6x-19=0
We add all the numbers together, and all the variables
3x^2+4x-19=0
a = 3; b = 4; c = -19;
Δ = b2-4ac
Δ = 42-4·3·(-19)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{61}}{2*3}=\frac{-4-2\sqrt{61}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{61}}{2*3}=\frac{-4+2\sqrt{61}}{6} $
| -15+150x=50 | | 3x-2x+4=2+x+2x | | 2x-13+4x-5=180 | | 7x^-70x=0 | | 5x-(+2x)=0 | | 12764=2000+299x | | 6=2t+10t | | 3(t-24)=7-4(t-18) | | 7=x/5=-1 | | 2z+21=9z+7 | | –40=5(b–1) | | -0.75z+0.85z=0.05 | | 38+51+x=180 | | (3*t-4)/5=5 | | 2x-24+5x-27=180 | | F/2+2=f/3-2 | | 4(y-2)-1=-3(-9y+9)-7y | | -13.02-12.6p=-19.62-14.1p-19.5 | | 8000x^2+x^2=44,100 | | 8-2x=2x+12. | | -2x/3-5=-11 | | (x+1)^2(3x+2)=0 | | –3x–6=15 | | 4=u/10 | | (m-24)(m+24)=100 | | 94+x+93+x+77=360 | | 4(w+7)=-2(4w-6)+6w | | (x-11)•-4=-48 | | x+6=27+4x | | 68+64+90+2x=360 | | 100+x+24+89+68=360 | | x/x-1+1/x=3 |