3(x+2)(x-2)=(x-4)+8x

Simple and best practice solution for 3(x+2)(x-2)=(x-4)+8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x+2)(x-2)=(x-4)+8x equation:



3(x+2)(x-2)=(x-4)+8x
We move all terms to the left:
3(x+2)(x-2)-((x-4)+8x)=0
We use the square of the difference formula
x^2-((x-4)+8x)-4=0
We calculate terms in parentheses: -((x-4)+8x), so:
(x-4)+8x
We add all the numbers together, and all the variables
8x+(x-4)
We get rid of parentheses
8x+x-4
We add all the numbers together, and all the variables
9x-4
Back to the equation:
-(9x-4)
We get rid of parentheses
x^2-9x+4-4=0
We add all the numbers together, and all the variables
x^2-9x=0
a = 1; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·1·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*1}=\frac{0}{2} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*1}=\frac{18}{2} =9 $

See similar equations:

| 3((-2-5x)(6-1x))=0 | | f(0)=(0)-3 | | Y=x^2+8x+16=0 | | 4+2.2g=3.7 | | 12c+69c=-15 | | 12+9q=15+8 | | 4x-4+2=-10 | | 392-15(9z-6)=990 | | 2/3w+8=-10-1/2w | | H(x)=14-8x | | -3=-5/6f | | 12x+12=25 | | (x-10)/8=1.5 | | (4x-6)(4x+6)-270=0 | | -6r=13+2r-11 | | -16/9w=7 | | 16/9w=7 | | 2x^2+8x=8 | | -1.6=w-3.2 | | 3y-9=y-1 | | Y-1=17t | | -7(4+h)=3h | | 6-9x=6x-10x-16 | | -2|x-7|=14 | | Y-1=17x | | 1.25+x=-1.26 | | (x-5)(x+5)=20 | | -3/5=4/3y-1/2 | | -7x+6x=20x(^2) | | x+5×=90 | | 7z-46z=18 | | 74+90+106+8x+x=180 |

Equations solver categories