3(x+4)(x-2)-2(x-5)(x-3)=5

Simple and best practice solution for 3(x+4)(x-2)-2(x-5)(x-3)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x+4)(x-2)-2(x-5)(x-3)=5 equation:



3(x+4)(x-2)-2(x-5)(x-3)=5
We move all terms to the left:
3(x+4)(x-2)-2(x-5)(x-3)-(5)=0
We multiply parentheses ..
3(+x^2-2x+4x-8)-2(x-5)(x-3)-5=0
We multiply parentheses
3x^2-6x+12x-2(x-5)(x-3)-24-5=0
We multiply parentheses ..
3x^2-2(+x^2-3x-5x+15)-6x+12x-24-5=0
We add all the numbers together, and all the variables
3x^2-2(+x^2-3x-5x+15)+6x-29=0
We multiply parentheses
3x^2-2x^2+6x+10x+6x-30-29=0
We add all the numbers together, and all the variables
x^2+22x-59=0
a = 1; b = 22; c = -59;
Δ = b2-4ac
Δ = 222-4·1·(-59)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-12\sqrt{5}}{2*1}=\frac{-22-12\sqrt{5}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+12\sqrt{5}}{2*1}=\frac{-22+12\sqrt{5}}{2} $

See similar equations:

| 1/4x116/3= | | 3|x=18 | | (x+9)+(2x-6)=42 | | (x+5)(8-x)=47 | | (2/9)^8*(2/9)^-6=(2/9)^2m-1 | | x^2-0.64=0 | | 138=n+n | | 9–7q=5-3q | | 7p+13=2p+4 | | 3x/2+5-x/x=4 | | X+(600-0.2x)=1000 | | 0.225x-1800=0 | | 4*(x/3)=342 | | 4x/3=344 | | 10-10x10=-90 | | 1+7x=-7x | | 10=f–26 | | f(-2)=-2^3+9 | | n−28=28 | | q+19=62 | | 47=2h+7 | | 34=3n+7 | | (x-4)/2=(8-4) | | 6y/4=y+4 | | 3/4(2y)=(y+4) | | 4/3h=72 | | (X-4)/2=(y-4) | | (4/3y+4/3-4)/2=(y-4) | | 9x^2+27x-172=0 | | (2x)°+(3x-40)=x | | b+(8-b)/2=5 | | b+(6-b)/2=5 |

Equations solver categories