3(x+5)-5=7+(3+3x2)

Simple and best practice solution for 3(x+5)-5=7+(3+3x2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x+5)-5=7+(3+3x2) equation:



3(x+5)-5=7+(3+3x^2)
We move all terms to the left:
3(x+5)-5-(7+(3+3x^2))=0
We multiply parentheses
-(7+(3+3x^2))+3x+15-5=0
We calculate terms in parentheses: -(7+(3+3x^2)), so:
7+(3+3x^2)
determiningTheFunctionDomain (3+3x^2)+7
We get rid of parentheses
3x^2+3+7
We add all the numbers together, and all the variables
3x^2+10
Back to the equation:
-(3x^2+10)
We add all the numbers together, and all the variables
3x-(3x^2+10)+10=0
We get rid of parentheses
-3x^2+3x-10+10=0
We add all the numbers together, and all the variables
-3x^2+3x=0
a = -3; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-3)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-3}=\frac{-6}{-6} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-3}=\frac{0}{-6} =0 $

See similar equations:

| -24(-5-b)=2(b+16) | | 2x^2=361 | | r/4=29.38 | | 7(3x-4)=54 | | 300-10q=2q=q= | | x^2-15x-36=-9x+4 | | 2(6x-9)=-34 | | 3x-5(x-5)=-9+4x-14 | | 8x-6x+11=2(x-4) | | 12/13x=27 | | 7x+5=14x+6 | | x^2-15x-36=-9x-4 | | 38m-48=5m^2 | | 14/13x=27 | | 5x(-14-x)=-30-2x | | 2v+12=4v | | -128/4z=-8 | | x^2-9x+1=-4x-5 | | 5x(-14-x=-30-2x | | 12(y)=12(5) | | 12+4x-8=6x+7-2x | | -8(-2-7)=40+8n | | c/6+28=34 | | (6r+7)^2=0 | | 200x+x=100 | | 4s-8=8 | | 8c+2c=40 | | 9k/9=27/9 | | 1(4x-6)=11 | | (X-9)(x+5)X=0 | | 19x-4=32 | | 7(x+2)-4x=10 |

Equations solver categories