If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(x-1)+x2=3(x-1)+2
We move all terms to the left:
3(x-1)+x2-(3(x-1)+2)=0
We add all the numbers together, and all the variables
x^2+3(x-1)-(3(x-1)+2)=0
We multiply parentheses
x^2+3x-(3(x-1)+2)-3=0
We calculate terms in parentheses: -(3(x-1)+2), so:We get rid of parentheses
3(x-1)+2
We multiply parentheses
3x-3+2
We add all the numbers together, and all the variables
3x-1
Back to the equation:
-(3x-1)
x^2+3x-3x+1-3=0
We add all the numbers together, and all the variables
x^2-2=0
a = 1; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·1·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*1}=\frac{0-2\sqrt{2}}{2} =-\frac{2\sqrt{2}}{2} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*1}=\frac{0+2\sqrt{2}}{2} =\frac{2\sqrt{2}}{2} =\sqrt{2} $
| 6y-2(y=5) | | 6(v+5)=-8v+16 | | 2+a/5=-1 | | 3x2+4x–16=0 | | -4v-16=-6(v+1) | | 5x=x+8+28 | | 5x=x+8+25 | | 5=3m-16 | | 3x-2(3x-1)=22 | | 5m×(5⁷)m=5¹² | | 9x^2=(x^2+x-5)((3x+1)^2 | | 2m+5m-3m=4 | | 9x^2=(x^2+x-5)((3x+1)^(1/2)-1)^2 | | 3(5x-1)=2(x+18) | | 9/12=n/228 | | 86=6+10n | | 0.5x50=25 | | 3x−2(3x−1)=−22 | | 8x=14+9x/2 | | |9+7x|=65 | | 96-x=87 | | 6x+3=5x+44 | | 25+67=c | | 8x=214+9x | | 7.51x+36=56.4001+6x | | F(5)=|2x-26| | | 11x+8=22x+11 | | z+(-85)=35 | | z+(-87)=37 | | z-(-81)=197 | | 9a-9=-2 | | 20=3(y+5)-8y |