3(x-2)(x+1)=(3x-6)(3x+3)

Simple and best practice solution for 3(x-2)(x+1)=(3x-6)(3x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x-2)(x+1)=(3x-6)(3x+3) equation:



3(x-2)(x+1)=(3x-6)(3x+3)
We move all terms to the left:
3(x-2)(x+1)-((3x-6)(3x+3))=0
We multiply parentheses ..
3(+x^2+x-2x-2)-((3x-6)(3x+3))=0
We calculate terms in parentheses: -((3x-6)(3x+3)), so:
(3x-6)(3x+3)
We multiply parentheses ..
(+9x^2+9x-18x-18)
We get rid of parentheses
9x^2+9x-18x-18
We add all the numbers together, and all the variables
9x^2-9x-18
Back to the equation:
-(9x^2-9x-18)
We multiply parentheses
3x^2+3x-6x-(9x^2-9x-18)-6=0
We get rid of parentheses
3x^2-9x^2+3x-6x+9x+18-6=0
We add all the numbers together, and all the variables
-6x^2+6x+12=0
a = -6; b = 6; c = +12;
Δ = b2-4ac
Δ = 62-4·(-6)·12
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-18}{2*-6}=\frac{-24}{-12} =+2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+18}{2*-6}=\frac{12}{-12} =-1 $

See similar equations:

| 6(c+4)=42 | | 39=17-4y | | 3w-2w+8=20 | | 39=17-44y | | 1w+2w=27 | | 7h=8h−10 | | w=2w=27 | | 4r+4=3r | | 2w+4w-7=11 | | H^2-10h+18=0 | | -204=-4(3-6m | | 9y+8=-19 | | s/9=-6 | | 9n+6=33 | | 6x-5=3x+29 | | -5=p-7+4 | | -3x+2=-33 | | x/2-5=26 | | 9x^2+24x-11=0 | | d/12-19=-18 | | (3/2x)-(2/3x)=(5/12) | | 9m2-15m-1160=0 | | 6=4-g | | 180(n-2)=4680 | | 6^5x*6^7x=1296 | | -4=6-r | | m/7=-42 | | 2q+1=-7 | | -6=-4-d | | z/7-5=12 | | (3x+10)=(4x-6) | | 6=-4-z |

Equations solver categories