3(x-2)(x-5)-2(x+9)(x-1)=18

Simple and best practice solution for 3(x-2)(x-5)-2(x+9)(x-1)=18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x-2)(x-5)-2(x+9)(x-1)=18 equation:



3(x-2)(x-5)-2(x+9)(x-1)=18
We move all terms to the left:
3(x-2)(x-5)-2(x+9)(x-1)-(18)=0
We multiply parentheses ..
3(+x^2-5x-2x+10)-2(x+9)(x-1)-18=0
We multiply parentheses
3x^2-15x-6x-2(x+9)(x-1)+30-18=0
We multiply parentheses ..
3x^2-2(+x^2-1x+9x-9)-15x-6x+30-18=0
We add all the numbers together, and all the variables
3x^2-2(+x^2-1x+9x-9)-21x+12=0
We multiply parentheses
3x^2-2x^2+2x-18x-21x+18+12=0
We add all the numbers together, and all the variables
x^2-37x+30=0
a = 1; b = -37; c = +30;
Δ = b2-4ac
Δ = -372-4·1·30
Δ = 1249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-37)-\sqrt{1249}}{2*1}=\frac{37-\sqrt{1249}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-37)+\sqrt{1249}}{2*1}=\frac{37+\sqrt{1249}}{2} $

See similar equations:

| 2y+4×2=64 | | 12b-5=2 | | 2x²+.5=0 | | -2x²+0.5=0 | | (2x+1)^2+6=0 | | X3+x4=-4x | | (2x+1)(x-2)=(2x+1)(2x-3) | | (3x+5)×2=(2x-1)×4 | | 25x^2-23x-2=0 | | 9(4x-1)÷2x=15 | | 6a/7=12 | | 3a/5=9 | | 7a/2=21 | | 4a/7=12 | | x×(-10)=15 | | 5a/3=15 | | 2x^2+8x3=0 | | 3a/2=6 | | 2^-x=0,0625 | | 0,0625=2^−x | | -2x-5/8=3x-7/2 | | a+2/3=4 | | 6x-3÷7=3 | | 27^3x+1=9^6 | | 3x^2+20x-117=0 | | 2+3m=m | | (x-2)+x=14 | | 20x^2+16x=48 | | 3^(x+2)+7^x=4*7^(x-1)+34*3^(x-1) | | 9x+2=-2x-3 | | x^2+15x-225=0 | | 13x=184 |

Equations solver categories