If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3(x + -2) * 3(x + -2) + 4 = 52 Reorder the terms: 3(-2 + x) * 3(x + -2) + 4 = 52 Reorder the terms: 3(-2 + x) * 3(-2 + x) + 4 = 52 Reorder the terms for easier multiplication: 3 * 3(-2 + x)(-2 + x) + 4 = 52 Multiply 3 * 3 9(-2 + x)(-2 + x) + 4 = 52 Multiply (-2 + x) * (-2 + x) 9(-2(-2 + x) + x(-2 + x)) + 4 = 52 9((-2 * -2 + x * -2) + x(-2 + x)) + 4 = 52 9((4 + -2x) + x(-2 + x)) + 4 = 52 9(4 + -2x + (-2 * x + x * x)) + 4 = 52 9(4 + -2x + (-2x + x2)) + 4 = 52 Combine like terms: -2x + -2x = -4x 9(4 + -4x + x2) + 4 = 52 (4 * 9 + -4x * 9 + x2 * 9) + 4 = 52 (36 + -36x + 9x2) + 4 = 52 Reorder the terms: 36 + 4 + -36x + 9x2 = 52 Combine like terms: 36 + 4 = 40 40 + -36x + 9x2 = 52 Solving 40 + -36x + 9x2 = 52 Solving for variable 'x'. Reorder the terms: 40 + -52 + -36x + 9x2 = 52 + -52 Combine like terms: 40 + -52 = -12 -12 + -36x + 9x2 = 52 + -52 Combine like terms: 52 + -52 = 0 -12 + -36x + 9x2 = 0 Factor out the Greatest Common Factor (GCF), '3'. 3(-4 + -12x + 3x2) = 0 Ignore the factor 3.Subproblem 1
Set the factor '(-4 + -12x + 3x2)' equal to zero and attempt to solve: Simplifying -4 + -12x + 3x2 = 0 Solving -4 + -12x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1.333333333 + -4x + x2 = 0 Move the constant term to the right: Add '1.333333333' to each side of the equation. -1.333333333 + -4x + 1.333333333 + x2 = 0 + 1.333333333 Reorder the terms: -1.333333333 + 1.333333333 + -4x + x2 = 0 + 1.333333333 Combine like terms: -1.333333333 + 1.333333333 = 0.000000000 0.000000000 + -4x + x2 = 0 + 1.333333333 -4x + x2 = 0 + 1.333333333 Combine like terms: 0 + 1.333333333 = 1.333333333 -4x + x2 = 1.333333333 The x term is -4x. Take half its coefficient (-2). Square it (4) and add it to both sides. Add '4' to each side of the equation. -4x + 4 + x2 = 1.333333333 + 4 Reorder the terms: 4 + -4x + x2 = 1.333333333 + 4 Combine like terms: 1.333333333 + 4 = 5.333333333 4 + -4x + x2 = 5.333333333 Factor a perfect square on the left side: (x + -2)(x + -2) = 5.333333333 Calculate the square root of the right side: 2.309401077 Break this problem into two subproblems by setting (x + -2) equal to 2.309401077 and -2.309401077.Subproblem 1
x + -2 = 2.309401077 Simplifying x + -2 = 2.309401077 Reorder the terms: -2 + x = 2.309401077 Solving -2 + x = 2.309401077 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + x = 2.309401077 + 2 Combine like terms: -2 + 2 = 0 0 + x = 2.309401077 + 2 x = 2.309401077 + 2 Combine like terms: 2.309401077 + 2 = 4.309401077 x = 4.309401077 Simplifying x = 4.309401077Subproblem 2
x + -2 = -2.309401077 Simplifying x + -2 = -2.309401077 Reorder the terms: -2 + x = -2.309401077 Solving -2 + x = -2.309401077 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + x = -2.309401077 + 2 Combine like terms: -2 + 2 = 0 0 + x = -2.309401077 + 2 x = -2.309401077 + 2 Combine like terms: -2.309401077 + 2 = -0.309401077 x = -0.309401077 Simplifying x = -0.309401077Solution
The solution to the problem is based on the solutions from the subproblems. x = {4.309401077, -0.309401077}Solution
x = {4.309401077, -0.309401077}
| d+9=14 | | 3x+4x=15 | | 3x+4x=13 | | 2x+3x=160 | | 5n+1/9=1/2 | | 3(x-2)*(x-2)+4=52 | | 12x^2-16x+32= | | 39-(3x+6)=3(x+4)+x | | 6x+8=36+2x | | 4=3+4(x-5) | | -9(k+5)-(4+4k)=-14k | | -2(4x-5)-10=-2(8x+2)-2 | | (5.6-2a+1.4)/1.2=4.5 | | 4x+3=150 | | r-14=20 | | -6x+3=7x+10 | | X(7-3)-8=24 | | 39x^2-498x-2430=0 | | -3(x+5)-43=8-39 | | 4x+8(7x-8)=-484 | | (-5x^4)(-8x^7)(2x)= | | 8x-(6x+6)=0 | | 2b=30 | | 60=12m | | -6.2x-10=-28.6 | | -8n+7(4n+5)=115 | | -4(x+1)-11=14+3 | | 2.2t-2.3=7.6 | | -4.2=9.1x+231 | | .66x^2-8=16 | | 2x(x+8)=180 | | -44s-2=-55s-4.2 |