3(x-2)+7x=(1/2)(6x-2)

Simple and best practice solution for 3(x-2)+7x=(1/2)(6x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x-2)+7x=(1/2)(6x-2) equation:



3(x-2)+7x=(1/2)(6x-2)
We move all terms to the left:
3(x-2)+7x-((1/2)(6x-2))=0
Domain of the equation: 2)(6x-2))!=0
x∈R
We add all the numbers together, and all the variables
3(x-2)+7x-((+1/2)(6x-2))=0
We add all the numbers together, and all the variables
7x+3(x-2)-((+1/2)(6x-2))=0
We multiply parentheses
7x+3x-((+1/2)(6x-2))-6=0
We multiply parentheses ..
-((+6x^2+1/2*-2))+7x+3x-6=0
We multiply all the terms by the denominator
-((+6x^2+1+7x*2*-2))+3x*2*-2))-6*2*-2))=0
We calculate terms in parentheses: -((+6x^2+1+7x*2*-2)), so:
(+6x^2+1+7x*2*-2)
We get rid of parentheses
6x^2+7x*2*+1-2
We add all the numbers together, and all the variables
6x^2+7x*2*-1
Wy multiply elements
6x^2+14x^2-1
We add all the numbers together, and all the variables
20x^2-1
Back to the equation:
-(20x^2-1)
We add all the numbers together, and all the variables
-(20x^2-1)+3x*2*=0
Wy multiply elements
6x^2-(20x^2-1)=0
We get rid of parentheses
6x^2-20x^2+1=0
We add all the numbers together, and all the variables
-14x^2+1=0
a = -14; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-14)·1
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*-14}=\frac{0-2\sqrt{14}}{-28} =-\frac{2\sqrt{14}}{-28} =-\frac{\sqrt{14}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*-14}=\frac{0+2\sqrt{14}}{-28} =\frac{2\sqrt{14}}{-28} =\frac{\sqrt{14}}{-14} $

See similar equations:

| 24=6(-x-3)+2x | | -x(2)+900=0 | | 2x+4/10=3 | | 8(1+5n)+8=144 | | 7/y-6=5 | | 10w–3=8w+5 | | 32-4x=16+12x | | 11+n11=2 | | 6x=2(2x+5)+4 | | 4.1x+1.2=1.7x+8.4 | | 3(2a-6=42 | | 18–2x–4x=–24 | | 450x+40=975-45.45x-19.55x | | 12=10+x/7 | | -4+y/8=2 | | -10x-6+4x=8(3x-1) | | $450x+$40=$975-45.45x-$19.55x | | 3(x+6)-9=6 | | 15x=43 | | -16=8r-8r | | 11=(2x-8)+(x+10) | | k-20=5(7k-4) | | 35k+490-70k=385 | | x+5=−x−5= | | x-20=-14.5 | | 7/3x+70=360 | | 3x-6+2x-6=5 | | 67-2x=+82x-3=180 | | -20x=23 | | -3+k/10=-1 | | 7/3x-70=360 | | -2(x-11)=-26 |

Equations solver categories