If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(x-5)+6=x(-9-2x)
We move all terms to the left:
3(x-5)+6-(x(-9-2x))=0
We add all the numbers together, and all the variables
3(x-5)-(x(-2x-9))+6=0
We multiply parentheses
3x-(x(-2x-9))-15+6=0
We calculate terms in parentheses: -(x(-2x-9)), so:We add all the numbers together, and all the variables
x(-2x-9)
We multiply parentheses
-2x^2-9x
Back to the equation:
-(-2x^2-9x)
-(-2x^2-9x)+3x-9=0
We get rid of parentheses
2x^2+9x+3x-9=0
We add all the numbers together, and all the variables
2x^2+12x-9=0
a = 2; b = 12; c = -9;
Δ = b2-4ac
Δ = 122-4·2·(-9)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{6}}{2*2}=\frac{-12-6\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{6}}{2*2}=\frac{-12+6\sqrt{6}}{4} $
| 12x-30=5x | | 8+3m=1÷3m | | 3c^2-6c=-2 | | 8(3w+4)/3=-2 | | 2x+5=121 | | -5(2t-10)=-10 | | -8b+36=-6(8+6b) | | 8(s-7)=-140 | | 4^8/(4^2)-3/4^4=4n | | -(8y-6)-(-7y+5)=8 | | -x^2-4x-13.25=0 | | 4p+12=2p-2 | | 16x+14=-18 | | 3x*21=56 | | w-5.2=7.26 | | -3n+8n=-5 | | 3x+2/2=30 | | 6x-117=99 | | 6(4s+4)=120 | | 5x-4x+5=6-3 | | 10x=245 | | 6x-117=109 | | x/12–7x=33* | | 4z=52z= | | 2x-+1=7 | | 35=-7a+2a | | (x^2)+24x+144=0 | | 2/5h=4/9 | | 2x+2.4=6.4 | | 0=96t+-16t2 | | A=–16t^2+44= | | a=17+35 |