3(x-7)5x=6(8x-3)

Simple and best practice solution for 3(x-7)5x=6(8x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x-7)5x=6(8x-3) equation:



3(x-7)5x=6(8x-3)
We move all terms to the left:
3(x-7)5x-(6(8x-3))=0
We multiply parentheses
15x^2-105x-(6(8x-3))=0
We calculate terms in parentheses: -(6(8x-3)), so:
6(8x-3)
We multiply parentheses
48x-18
Back to the equation:
-(48x-18)
We get rid of parentheses
15x^2-105x-48x+18=0
We add all the numbers together, and all the variables
15x^2-153x+18=0
a = 15; b = -153; c = +18;
Δ = b2-4ac
Δ = -1532-4·15·18
Δ = 22329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{22329}=\sqrt{9*2481}=\sqrt{9}*\sqrt{2481}=3\sqrt{2481}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-153)-3\sqrt{2481}}{2*15}=\frac{153-3\sqrt{2481}}{30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-153)+3\sqrt{2481}}{2*15}=\frac{153+3\sqrt{2481}}{30} $

See similar equations:

| 6x-10=6x- | | -16-17(2a+3)=23-2a | | 14+2u=-16+9u | | 31/28=7.5/x | | 6x-25=143 | | Cx3/4=22/5 | | 8-1c+1c=91 | | 5-v=2 | | -8(a-4)+3=2(4a+9)+1 | | x+29=223 | | 40÷3=x | | 3/4.5=6/d | | 3v+-6=3 | | 13+n=26+39 | | 2m-8=2+9m-1 | | y+(76-2y)=56 | | 10x-3=x+12 | | y/4+4=-18 | | y+(76-2y)=152 | | 1/2x2=50 | | 4=(2x) | | 2(3x-2)-8x=-24 | | .25x+(.01*4x)=1.45 | | (10x-10)+(9x+2)=180 | | -3(2r+7)=-2r-17 | | 38c+1c=30 | | -2x+2(4-3x)-10=-74 | | 15x+21=3(5x-7) | | 6x+10=6x- | | 0.96=0.06(13+0.2x) | | 2-3h=8 | | 3w+0.5(2w-6)=2w-2+2w-1 |

Equations solver categories