3(x/2+1)-16=3/2x

Simple and best practice solution for 3(x/2+1)-16=3/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x/2+1)-16=3/2x equation:



3(x/2+1)-16=3/2x
We move all terms to the left:
3(x/2+1)-16-(3/2x)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
3(x/2+1)-(+3/2x)-16=0
We multiply parentheses
3x-(+3/2x)+3-16=0
We get rid of parentheses
3x-3/2x+3-16=0
We multiply all the terms by the denominator
3x*2x+3*2x-16*2x-3=0
Wy multiply elements
6x^2+6x-32x-3=0
We add all the numbers together, and all the variables
6x^2-26x-3=0
a = 6; b = -26; c = -3;
Δ = b2-4ac
Δ = -262-4·6·(-3)
Δ = 748
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{748}=\sqrt{4*187}=\sqrt{4}*\sqrt{187}=2\sqrt{187}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{187}}{2*6}=\frac{26-2\sqrt{187}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{187}}{2*6}=\frac{26+2\sqrt{187}}{12} $

See similar equations:

| -5c+5c+2c-6c=-16 | | 555=p+432 | | u-57=217 | | f-134=844 | | 4x+2x+16x=88 | | 360=8f | | 40f+2=60f-3 | | h+80=90 | | j-75=-10 | | 514=b+366 | | 648=24b | | (6x+14)=(5x+12) | | (3x-30)=(8x-10) | | g+23=79 | | 3.4=y/3 | | m+1.48=15.98 | | 6.2=4.7+y | | 4g=13.36 | | 22k=-11k | | 4g=13 | | 3x-2(7x-3)=50 | | 15.98=q+3.1 | | 15.98=q+4 | | 79=5v-9 | | q-11=4.1 | | 2x-2-3=5x-14 | | 7x+15=4x+18 | | 7x+8=87 | | 4/5y-8=8 | | 11u+7=-15 | | 6=1+7x+5 | | 2x-4x+5-6=20 |

Equations solver categories