If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(x/2-16)-30=50-1/3x
We move all terms to the left:
3(x/2-16)-30-(50-1/3x)=0
Domain of the equation: 3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
3(x/2-16)-(-1/3x+50)-30=0
We multiply parentheses
3x-(-1/3x+50)-48-30=0
We get rid of parentheses
3x+1/3x-50-48-30=0
We multiply all the terms by the denominator
3x*3x-50*3x-48*3x-30*3x+1=0
Wy multiply elements
9x^2-150x-144x-90x+1=0
We add all the numbers together, and all the variables
9x^2-384x+1=0
a = 9; b = -384; c = +1;
Δ = b2-4ac
Δ = -3842-4·9·1
Δ = 147420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{147420}=\sqrt{324*455}=\sqrt{324}*\sqrt{455}=18\sqrt{455}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-384)-18\sqrt{455}}{2*9}=\frac{384-18\sqrt{455}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-384)+18\sqrt{455}}{2*9}=\frac{384+18\sqrt{455}}{18} $
| 15+0.50p=p | | 2^y+9=11 | | 4^n·4^2=16384 | | A={nꞓN,n6} | | 5x+65=10x+35 | | (3x+11)°=(2x+4)° | | 7=5–2k | | -50c-c=5c-2 | | 2.3(c-11)=16.1 | | -17+7k=10-8(-9-5k | | 4.8(x-2.5)=-(9.6 | | 0.5x-2.5=3 | | 0.05x-0.1x+0.06=0.04x+2.22 | | 2x+6/2=10 | | |3+x|=−3 | | 289=64+(y+6)^2 | | 445p+145=2400 | | 28= 7x | | Y2+12y-225=0 | | 0.08(2.50t)+5=13.80 | | 5(x+2)-2x=18+3 | | 124=10y | | 9|1+3p|-8=-26 | | 2(3-8n)=-2(8n+3) | | 8(x+5)+9=49 | | -9x=85 | | 13x-7=7x+13 | | (4x+20)=(2x-5) | | (6x-8)=(4x+10) | | x^-4x-200=0 | | x=√20−x | | x^2-6x-667=0 |