If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(x2)+5x=18
We move all terms to the left:
3(x2)+5x-(18)=0
We add all the numbers together, and all the variables
3x^2+5x-18=0
a = 3; b = 5; c = -18;
Δ = b2-4ac
Δ = 52-4·3·(-18)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{241}}{2*3}=\frac{-5-\sqrt{241}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{241}}{2*3}=\frac{-5+\sqrt{241}}{6} $
| 3(3x+1)=12x+20 | | 8(1-3x)+4=168 | | -8(x-7)=208 | | 2+-2q=-6 | | n-22=67 | | 2/3(5x-7)=x | | -6m-6=-6m+6 | | -5+19f=18f-16 | | 6x+3-7x-19=180 | | 3x-8(x-3)=53 | | 4-12=8a | | -3x+33=-4+16 | | 6x=21x-30 | | 3y−6=2y | | 17−x=9 | | 3-(x+6)=8x-2 | | 3(2x+4)-3=10x-7x= | | 78+(8x-5)+(14x-3)=180 | | -20+7+12s=19-20s | | 8x−2x−16=−5x+7x | | -12k=84 | | 1.75x+15=22 | | 12h+5-10h-9=-18 | | 241-x=42 | | 9+4(9-3)=15+2a+9 | | 4(x+4)=24+6 | | -4(x+3)+18x-9=7 | | -12x=72- | | c=-c=2 | | v+3.6=7.19 | | (8x+1)-7x+3)=180 | | 4(c+7)=24 |