3(x2+5)-6=(9x+18)

Simple and best practice solution for 3(x2+5)-6=(9x+18) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x2+5)-6=(9x+18) equation:



3(x2+5)-6=(9x+18)
We move all terms to the left:
3(x2+5)-6-((9x+18))=0
We add all the numbers together, and all the variables
3(+x^2+5)-((9x+18))-6=0
We multiply parentheses
3x^2-((9x+18))+15-6=0
We calculate terms in parentheses: -((9x+18)), so:
(9x+18)
We get rid of parentheses
9x+18
Back to the equation:
-(9x+18)
We add all the numbers together, and all the variables
3x^2-(9x+18)+9=0
We get rid of parentheses
3x^2-9x-18+9=0
We add all the numbers together, and all the variables
3x^2-9x-9=0
a = 3; b = -9; c = -9;
Δ = b2-4ac
Δ = -92-4·3·(-9)
Δ = 189
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{189}=\sqrt{9*21}=\sqrt{9}*\sqrt{21}=3\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{21}}{2*3}=\frac{9-3\sqrt{21}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{21}}{2*3}=\frac{9+3\sqrt{21}}{6} $

See similar equations:

| 2.2+10m=7.79 | | -18-8(-m+17)=8-m | | 10-5(-7s-13)=20s | | 4w-13=11 | | 4(x+9)=2x−6 | | x(x^2-4x+1)=-6 | | 3(3w-4)=-12 | | y/3-8=9 | | -4+8+18y=4(y-19)+18y | | 8x-(6×-4)=10 | | 40=-4.9t^2+30t | | 8(2z+5)=12+18z-6 | | -5(2p-18)+10=2(-2p+5) | | 2/h+2h=9 | | 2x^2+4x=25 | | 2(-2v-1)=-5(2v+1)+9v | | 20=-4.9t^2+30t | | x+-0.9=2.8 | | -8-15g=-2(6g-20) | | 12+4x-x2=0 | | 5(2x+3)-23=1/3(4x+6)+8 | | P=185+0.03x | | -16-q-13=2(2q+20)+16 | | x-x(0.1)=200 | | 4^8x=255 | | -6(-k+7)=9k | | 5x+7+3x-9=90 | | 1/2(6x+4)=13 | | -15.5b=-11.16-16.7b | | 1.25+4x=1+6x | | 7.34-15.7q=-19.7q+11.34 | | x+-46=5 |

Equations solver categories