If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(x2+5)-6=(9x+18)3
We move all terms to the left:
3(x2+5)-6-((9x+18)3)=0
We add all the numbers together, and all the variables
3(+x^2+5)-((9x+18)3)-6=0
We multiply parentheses
3x^2-((9x+18)3)+15-6=0
We calculate terms in parentheses: -((9x+18)3), so:We add all the numbers together, and all the variables
(9x+18)3
We multiply parentheses
27x+54
Back to the equation:
-(27x+54)
3x^2-(27x+54)+9=0
We get rid of parentheses
3x^2-27x-54+9=0
We add all the numbers together, and all the variables
3x^2-27x-45=0
a = 3; b = -27; c = -45;
Δ = b2-4ac
Δ = -272-4·3·(-45)
Δ = 1269
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1269}=\sqrt{9*141}=\sqrt{9}*\sqrt{141}=3\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-3\sqrt{141}}{2*3}=\frac{27-3\sqrt{141}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+3\sqrt{141}}{2*3}=\frac{27+3\sqrt{141}}{6} $
| 3-6x=-2(3x+3 | | 1/2(4-8x)=-3(8x-4) | | (7x-16)=5x | | 2/3h−1/3h+11=823h−13h+11=8 | | n+2(n-4)=5n-6 | | -15x+8×=x+3 | | 51-(2x+3)=4(x+5)+x | | 8y-10-5y-5=0 | | 2t+8t+7=4t+6t-5 | | -4n–8n+17=23 | | 41=8r−7 | | (7x+1)=(15x+3) | | C=5h-2h=12 | | x2+6x+9=2 | | 0=2x^2-5x+91 | | 4(2x-1)=8x+4 | | 45(-z+13)=-5(9z-90) | | -43n-48=5 | | 4(x–3)=5x+2x= | | 2n-9=16 | | 7r^2+8=0 | | 86=2n-4(-4-3n) | | 3X+7x+1=2(5x-1)+2 | | 2/3(2x+18)=4x-27 | | 15x+8x=x+3 | | 5a-8=-2(a-3) | | 3(2w–7)=3 | | 4(x–3)=5x+2 | | 30x=250 | | P(n)=70n−1500 | | (6x+3)+75=180 | | (x^2)-2x=(x^2)+7x+4 |