3(x2-2)+12=47

Simple and best practice solution for 3(x2-2)+12=47 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x2-2)+12=47 equation:



3(x2-2)+12=47
We move all terms to the left:
3(x2-2)+12-(47)=0
We add all the numbers together, and all the variables
3(+x^2-2)+12-47=0
We add all the numbers together, and all the variables
3(+x^2-2)-35=0
We multiply parentheses
3x^2-6-35=0
We add all the numbers together, and all the variables
3x^2-41=0
a = 3; b = 0; c = -41;
Δ = b2-4ac
Δ = 02-4·3·(-41)
Δ = 492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{492}=\sqrt{4*123}=\sqrt{4}*\sqrt{123}=2\sqrt{123}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{123}}{2*3}=\frac{0-2\sqrt{123}}{6} =-\frac{2\sqrt{123}}{6} =-\frac{\sqrt{123}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{123}}{2*3}=\frac{0+2\sqrt{123}}{6} =\frac{2\sqrt{123}}{6} =\frac{\sqrt{123}}{3} $

See similar equations:

| |x|=13.4 | | 4x/5=1 | | 548+29.5(u)=2,023 | | 8x-6=18x+4 | | v−–2–2=–3 | | 2(-0.8)-y=5 | | -4x=-6x+2(x-4) | | 4(4x+5)=5(3x-1) | | 5+6n=4 | | (10y)^3=0 | | 3(-0.8)+y=-9 | | 4(3x-6)=3(x-6.5) | | -4(-9-4x)=5(3x+8) | | 8x-4=14+6x | | 4x+26=7x+7 | | −x/3+10=18x= | | 3n-8n=-20 | | 2X+2-2y=0 | | -51=-3-6x | | −x3+10=18 | | 15(3n+8)n=13 | | 4y-12=-7+8y | | 3x-4+12=2x-8 | | −x3+10=18x= | | 2(3x-7)=-22 | | -4(7x+7)=168 | | -4(7x+7)=169 | | 15+3x+17/2=11 | | x-6/2+x/3=1/2(4x/3-3 | | 2(y+5)=13y+58 | | 2–31=-2x-31 | | x-6/2+x/3=1/2(4x/3-3) |

Equations solver categories