3(x2-4)-18=(x-1)2

Simple and best practice solution for 3(x2-4)-18=(x-1)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x2-4)-18=(x-1)2 equation:



3(x2-4)-18=(x-1)2
We move all terms to the left:
3(x2-4)-18-((x-1)2)=0
We add all the numbers together, and all the variables
3(+x^2-4)-((x-1)2)-18=0
We multiply parentheses
3x^2-((x-1)2)-12-18=0
We calculate terms in parentheses: -((x-1)2), so:
(x-1)2
We multiply parentheses
2x-2
Back to the equation:
-(2x-2)
We add all the numbers together, and all the variables
3x^2-(2x-2)-30=0
We get rid of parentheses
3x^2-2x+2-30=0
We add all the numbers together, and all the variables
3x^2-2x-28=0
a = 3; b = -2; c = -28;
Δ = b2-4ac
Δ = -22-4·3·(-28)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{85}}{2*3}=\frac{2-2\sqrt{85}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{85}}{2*3}=\frac{2+2\sqrt{85}}{6} $

See similar equations:

| 5x–5=3x-9 | | 3(3x–4)=4(x+2) | | 3.5z=25 | | 2×-4y=24 | | 5t^2+6t-43=0 | | 2.3p=18 | | 7x-8-43= | | (2a−6)(3a+15)=0. | | z/72.5=82.9 | | 53=101-8h | | 7l+l^2=170 | | 7x=9x-80 | | -3=4x+15 | | -x²-14x+48=0 | | 3x(x+10)=15 | | 40=173-x | | 2y^2=5y-+3 | | 189=20-u | | 142=7x+4x+10 | | 6x^2-3x+9x=4 | | z+61/3=4 | | 107=30+11x | | 3(x-9)=6x-9 | | -v+272=103 | | 2(3x+7)=4(-2x=1 | | 5x+3(2x-1)=8 | | 11x+3x=100 | | 3(4x–1)=33 | | 3(x+2)=8+4x | | 3m-20=2m | | .3333333x-5+171=x | | 2/3(x+5)^-1/3=0 |

Equations solver categories