If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3(y + 1)(-1 + -3y) = 4y + -2(y + 1) Reorder the terms: 3(1 + y)(-1 + -3y) = 4y + -2(y + 1) Multiply (1 + y) * (-1 + -3y) 3(1(-1 + -3y) + y(-1 + -3y)) = 4y + -2(y + 1) 3((-1 * 1 + -3y * 1) + y(-1 + -3y)) = 4y + -2(y + 1) 3((-1 + -3y) + y(-1 + -3y)) = 4y + -2(y + 1) 3(-1 + -3y + (-1 * y + -3y * y)) = 4y + -2(y + 1) 3(-1 + -3y + (-1y + -3y2)) = 4y + -2(y + 1) Combine like terms: -3y + -1y = -4y 3(-1 + -4y + -3y2) = 4y + -2(y + 1) (-1 * 3 + -4y * 3 + -3y2 * 3) = 4y + -2(y + 1) (-3 + -12y + -9y2) = 4y + -2(y + 1) Reorder the terms: -3 + -12y + -9y2 = 4y + -2(1 + y) -3 + -12y + -9y2 = 4y + (1 * -2 + y * -2) -3 + -12y + -9y2 = 4y + (-2 + -2y) Reorder the terms: -3 + -12y + -9y2 = -2 + 4y + -2y Combine like terms: 4y + -2y = 2y -3 + -12y + -9y2 = -2 + 2y Solving -3 + -12y + -9y2 = -2 + 2y Solving for variable 'y'. Reorder the terms: -3 + 2 + -12y + -2y + -9y2 = -2 + 2y + 2 + -2y Combine like terms: -3 + 2 = -1 -1 + -12y + -2y + -9y2 = -2 + 2y + 2 + -2y Combine like terms: -12y + -2y = -14y -1 + -14y + -9y2 = -2 + 2y + 2 + -2y Reorder the terms: -1 + -14y + -9y2 = -2 + 2 + 2y + -2y Combine like terms: -2 + 2 = 0 -1 + -14y + -9y2 = 0 + 2y + -2y -1 + -14y + -9y2 = 2y + -2y Combine like terms: 2y + -2y = 0 -1 + -14y + -9y2 = 0 Factor out the Greatest Common Factor (GCF), '-1'. -1(1 + 14y + 9y2) = 0 Ignore the factor -1.Subproblem 1
Set the factor '(1 + 14y + 9y2)' equal to zero and attempt to solve: Simplifying 1 + 14y + 9y2 = 0 Solving 1 + 14y + 9y2 = 0 Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 0.1111111111 + 1.555555556y + y2 = 0 Move the constant term to the right: Add '-0.1111111111' to each side of the equation. 0.1111111111 + 1.555555556y + -0.1111111111 + y2 = 0 + -0.1111111111 Reorder the terms: 0.1111111111 + -0.1111111111 + 1.555555556y + y2 = 0 + -0.1111111111 Combine like terms: 0.1111111111 + -0.1111111111 = 0.0000000000 0.0000000000 + 1.555555556y + y2 = 0 + -0.1111111111 1.555555556y + y2 = 0 + -0.1111111111 Combine like terms: 0 + -0.1111111111 = -0.1111111111 1.555555556y + y2 = -0.1111111111 The y term is 1.555555556y. Take half its coefficient (0.777777778). Square it (0.6049382720) and add it to both sides. Add '0.6049382720' to each side of the equation. 1.555555556y + 0.6049382720 + y2 = -0.1111111111 + 0.6049382720 Reorder the terms: 0.6049382720 + 1.555555556y + y2 = -0.1111111111 + 0.6049382720 Combine like terms: -0.1111111111 + 0.6049382720 = 0.4938271609 0.6049382720 + 1.555555556y + y2 = 0.4938271609 Factor a perfect square on the left side: (y + 0.777777778)(y + 0.777777778) = 0.4938271609 Calculate the square root of the right side: 0.702728369 Break this problem into two subproblems by setting (y + 0.777777778) equal to 0.702728369 and -0.702728369.Subproblem 1
y + 0.777777778 = 0.702728369 Simplifying y + 0.777777778 = 0.702728369 Reorder the terms: 0.777777778 + y = 0.702728369 Solving 0.777777778 + y = 0.702728369 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.777777778' to each side of the equation. 0.777777778 + -0.777777778 + y = 0.702728369 + -0.777777778 Combine like terms: 0.777777778 + -0.777777778 = 0.000000000 0.000000000 + y = 0.702728369 + -0.777777778 y = 0.702728369 + -0.777777778 Combine like terms: 0.702728369 + -0.777777778 = -0.075049409 y = -0.075049409 Simplifying y = -0.075049409Subproblem 2
y + 0.777777778 = -0.702728369 Simplifying y + 0.777777778 = -0.702728369 Reorder the terms: 0.777777778 + y = -0.702728369 Solving 0.777777778 + y = -0.702728369 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.777777778' to each side of the equation. 0.777777778 + -0.777777778 + y = -0.702728369 + -0.777777778 Combine like terms: 0.777777778 + -0.777777778 = 0.000000000 0.000000000 + y = -0.702728369 + -0.777777778 y = -0.702728369 + -0.777777778 Combine like terms: -0.702728369 + -0.777777778 = -1.480506147 y = -1.480506147 Simplifying y = -1.480506147Solution
The solution to the problem is based on the solutions from the subproblems. y = {-0.075049409, -1.480506147}Solution
y = {-0.075049409, -1.480506147}
| 4(x+6)=100 | | (-3x)+3=18 | | -x+42=-4x | | 13(x+6)-3=3x-5 | | 36-3x=45 | | 62x+(3)(4)=74 | | 6-4(3+x)=6 | | 1-6x=13-10x | | 7x-8y=91 | | 4x+30=7x-9 | | -8x-7y=9 | | h=-16t^2+36t+9 | | 9q^2=25 | | 7x+3y=6-5x | | a*x+b*y=c | | 5w^2=-9w-4 | | -9w-4-5w^2=0 | | u^2+10u+24=0 | | X^2-12x-21=0 | | 2p^2-12p+16=0 | | 2(r-11)=(r-5)[(r+3)-13] | | X^2+4x=13 | | x+2=x-1 | | y=mx+h | | d^2+2d-99=0 | | x+2(x-2)+3x=35 | | 5x+3(2x+3)= | | 5x-3y=6 | | (52x-5)(35+x)=7 | | 12x=-8(10-x) | | 5x+5=25 | | 2q^2-9q+10=0 |