3(z-2)-11z=2/3z+2

Simple and best practice solution for 3(z-2)-11z=2/3z+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(z-2)-11z=2/3z+2 equation:



3(z-2)-11z=2/3z+2
We move all terms to the left:
3(z-2)-11z-(2/3z+2)=0
Domain of the equation: 3z+2)!=0
z∈R
We add all the numbers together, and all the variables
-11z+3(z-2)-(2/3z+2)=0
We multiply parentheses
-11z+3z-(2/3z+2)-6=0
We get rid of parentheses
-11z+3z-2/3z-2-6=0
We multiply all the terms by the denominator
-11z*3z+3z*3z-2*3z-6*3z-2=0
Wy multiply elements
-33z^2+9z^2-6z-18z-2=0
We add all the numbers together, and all the variables
-24z^2-24z-2=0
a = -24; b = -24; c = -2;
Δ = b2-4ac
Δ = -242-4·(-24)·(-2)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{6}}{2*-24}=\frac{24-8\sqrt{6}}{-48} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{6}}{2*-24}=\frac{24+8\sqrt{6}}{-48} $

See similar equations:

| G(4)=2x-7 | | 3x-5(x-5)=7+4x-4 | | R(p)=-8p^2+40000 | | 2x^2+5x=6x | | 7(x+5)=5x+39= | | 6(x-3)-8x=-24 | | 2x+103°=7x+68° | | 18 = 5p + 3 | | 9k-7=3k+5 | | -31=-2(4y-5) | | G(2)=2x-7 | | 4(5+2x)+12=-136 | | 2x-5(x-5)=2+5x-21 | | 3(2k-5)=34 | | 10x+1.5=4.5 | | X-6y=2;(2,4) | | 3(6x-2)=2(9x-5)+4 | | 2x^2=15x-12=0 | | 7(x+3)-12=24 | | 43(x-2)-4=7+8(5x-11) | | 1*n=9 | | x-12=68 | | 200t=1200+350t | | Y=1/4x3 | | 7y+2=14+4y | | 2x-4(2x+3)=10 | | 5/6y+1=-15 | | 3x+(2x+12)=90 | | 7x+9=24 | | 4n+2=6(​1/3​​n−​2/3​​) | | 2x^2+24x-4=0 | | -2+2x=5+3x |

Equations solver categories