If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(x2+6)+17=7(x2-4)
We move all terms to the left:
3(x2+6)+17-(7(x2-4))=0
We add all the numbers together, and all the variables
3(+x^2+6)-(7(+x^2-4))+17=0
We multiply parentheses
3x^2-(7(+x^2-4))+18+17=0
We calculate terms in parentheses: -(7(+x^2-4)), so:We add all the numbers together, and all the variables
7(+x^2-4)
We multiply parentheses
7x^2-28
Back to the equation:
-(7x^2-28)
3x^2-(7x^2-28)+35=0
We get rid of parentheses
3x^2-7x^2+28+35=0
We add all the numbers together, and all the variables
-4x^2+63=0
a = -4; b = 0; c = +63;
Δ = b2-4ac
Δ = 02-4·(-4)·63
Δ = 1008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1008}=\sqrt{144*7}=\sqrt{144}*\sqrt{7}=12\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{7}}{2*-4}=\frac{0-12\sqrt{7}}{-8} =-\frac{12\sqrt{7}}{-8} =-\frac{3\sqrt{7}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{7}}{2*-4}=\frac{0+12\sqrt{7}}{-8} =\frac{12\sqrt{7}}{-8} =\frac{3\sqrt{7}}{-2} $
| v/3+9=30 | | 4^2x-1=17 | | x+x/2=255 | | 3x/8-10=2x-15/8 | | -3=-13–5x | | 10q+2q+5=2(q-3) | | 1/4x+3.2=8.2 | | 3(5x-1)+7=5(3x-1)+3 | | 50=k*1600^2 | | 7x(4x-9)=-26+6x | | 7x(4-9)=-26+6x | | 10ˆ0,3=x | | 2(x+3)-7x-10=36 | | (3x)^4=81 | | (4x-8)(4x-3)(4x-2)=0 | | 3-6n-4=7 | | 2-(2t-1)=20 | | (n-1)+n+(n=1)=81 | | 10,2-3x+2,6=7x-2,5 | | 5(t+4)=3(6+t) | | 7(4-2x)=-4x | | 6x-2=4(2x-3)-2(x+5) | | |5x-7|=13-2x | | 2/11x+16=4+7/11x | | 32^-3x=1/64 | | j÷-2+7=12 | | 3(x-2)=4x-13 | | 4^(2x-1)-4^(2x-2)=384 | | x-(4-3x)=6x-(x-2) | | 8+4(x-5)=(2+4x)-5 | | 0,5*10^x-17=33 | | 7x/9-11=3 |