If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=5
We move all terms to the left:
3x^2-(5)=0
a = 3; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·3·(-5)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*3}=\frac{0-2\sqrt{15}}{6} =-\frac{2\sqrt{15}}{6} =-\frac{\sqrt{15}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*3}=\frac{0+2\sqrt{15}}{6} =\frac{2\sqrt{15}}{6} =\frac{\sqrt{15}}{3} $
| 6(n3)-2n=10 | | -2.25=r-(4/5) | | 137=-10v-3 | | X+62=x+2 | | 25=9-w | | 3x(2+5)=(3x)+(3x) | | 3.4/1.1=9.5/r | | 10-9j=-152 | | -((12x-17)/25)=11x+18/25 | | 5/9=9x | | n/4=8/10 | | 2x^2+8x-34=6x-2 | | 42=52-u | | -9.3=q-3.4 | | 1.75-5=a | | 29=4v+6v | | 8/5=p/10 | | 30-12a=-12a^2 | | 120c+160=2c+6+c | | 15•10x=10x-4 | | 3.5i+4=1.5i=14 | | 65=5(1-3k) | | 3/4x+7=-2/3x-1 | | X+62°=x+2° | | 8x+18=2(5–x) | | (5+2x)6-10=20 | | k/8=8/2 | | 4x+16-9=4(5+1) | | 10x+48=7x | | 4x+16-9=4(5x+1 | | 3x+9+8x+5+4x+4=180 | | 22x=10x |