3+(1/2)x+100=160

Simple and best practice solution for 3+(1/2)x+100=160 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3+(1/2)x+100=160 equation:



3+(1/2)x+100=160
We move all terms to the left:
3+(1/2)x+100-(160)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)x+3+100-160=0
We add all the numbers together, and all the variables
(+1/2)x-57=0
We multiply parentheses
x^2-57=0
a = 1; b = 0; c = -57;
Δ = b2-4ac
Δ = 02-4·1·(-57)
Δ = 228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{228}=\sqrt{4*57}=\sqrt{4}*\sqrt{57}=2\sqrt{57}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{57}}{2*1}=\frac{0-2\sqrt{57}}{2} =-\frac{2\sqrt{57}}{2} =-\sqrt{57} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{57}}{2*1}=\frac{0+2\sqrt{57}}{2} =\frac{2\sqrt{57}}{2} =\sqrt{57} $

See similar equations:

| 3+((1/2)x)+100=160 | | 3g+3(-5+3g)=1-(g) | | -3=1/12x | | 3(-m/3)=3(-4) | | 2x+2(x+3)=22 | | 8+2k=3k+2 | | -137.4=-2.4-9n | | -2(t-5)-3t=60 | | 100.66=-6.3m-1.4 | | 137=2-9r | | 108=3(6v-6) | | -13=-6+n/2 | | 16/3x=128 | | 5-(2x-4)=5x-12 | | 7r+8(5r-7)=-150 | | 5x−15=2x+6 | | -12=m/5-9 | | 2b÷3-13=-9 | | -16=-9+p/2 | | 27x+4=1 | | -5=-4+n/16 | | 20+z=70 | | n/3-9=-11 | | 108=2(-7n-2) | | -13-3v=-3(v+7 | | -9+6x=-21 | | -24=-6x+2x | | 158=-10k+8 | | 5(w-4)=5w-20 | | 2/9=18/j | | -7-6x+6=11 | | -7-5m=33 |

Equations solver categories