3+(2y-1)(y+5)=(y+2)(y+7)

Simple and best practice solution for 3+(2y-1)(y+5)=(y+2)(y+7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3+(2y-1)(y+5)=(y+2)(y+7) equation:



3+(2y-1)(y+5)=(y+2)(y+7)
We move all terms to the left:
3+(2y-1)(y+5)-((y+2)(y+7))=0
We multiply parentheses ..
(+2y^2+10y-1y-5)-((y+2)(y+7))+3=0
We calculate terms in parentheses: -((y+2)(y+7)), so:
(y+2)(y+7)
We multiply parentheses ..
(+y^2+7y+2y+14)
We get rid of parentheses
y^2+7y+2y+14
We add all the numbers together, and all the variables
y^2+9y+14
Back to the equation:
-(y^2+9y+14)
We get rid of parentheses
2y^2-y^2+10y-1y-9y-5-14+3=0
We add all the numbers together, and all the variables
y^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $

See similar equations:

| -4.1-4x=7.5 | | 4(x=5)=4x+5x | | 4.3t+-2.1t+-2.3=7.6 | | 14x=11x+10=-39 | | n/16=64 | | 4n-(20-3n)=10 | | 9x+(2x+6)=28 | | 1/6p+4=1/5p | | -15x+236=3x+12 | | 5(2z+4)=60 | | -6.1-5x=9.9 | | 11+1/3y=2 | | 2x=6x+1 | | -4=-7x+6x+5 | | 22/n=-6/5 | | 5x-2(x-5)=-2+5x+4 | | 25x-3=122 | | 9x-4(2-2)=x+20 | | 3(-7+6x)=75 | | -7(5x–7)=-301 | | 6(b-2)=6 | | 69b-2=6 | | 8g+4=7g+14 | | 1-(7÷x^2-9)=0 | | 6x+2+80+50=180 | | 3x+9+3x=63 | | -10=-4(x+0.5 | | 43/10-(22/5x+51/2)=1/2(-33/5×+11/5) | | n-1*n=n^2-n | | -10=-49x+0.5 | | 17x+6=18x-1 | | 12y+6=6(2y=11) |

Equations solver categories