3+12/5x=9/4x-1

Simple and best practice solution for 3+12/5x=9/4x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3+12/5x=9/4x-1 equation:



3+12/5x=9/4x-1
We move all terms to the left:
3+12/5x-(9/4x-1)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 4x-1)!=0
x∈R
We get rid of parentheses
12/5x-9/4x+1+3=0
We calculate fractions
48x/20x^2+(-45x)/20x^2+1+3=0
We add all the numbers together, and all the variables
48x/20x^2+(-45x)/20x^2+4=0
We multiply all the terms by the denominator
48x+(-45x)+4*20x^2=0
Wy multiply elements
80x^2+48x+(-45x)=0
We get rid of parentheses
80x^2+48x-45x=0
We add all the numbers together, and all the variables
80x^2+3x=0
a = 80; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·80·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*80}=\frac{-6}{160} =-3/80 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*80}=\frac{0}{160} =0 $

See similar equations:

| 5x-2x+4=22 | | 3(x+2)=-5-2x-3 | | x/5-13=6 | | 6x-4=2(3x-21 | | 3y+8=59 | | 7=x+6x | | 3x+2=1/2(6x+4) | | 2x/0.5-3=25 | | 11y+4y=110 | | (x+6)+(5x-12)+(7x-48)=180 | | 3b(2b+-20)=358 | | 1/3(6y+9)=-15 | | -80=-x-6x+4 | | -5x+4+x=-36 | | -2y-3y(2y-1)=6y-4 | | 10=8.22w–3.152 | | -7x+7-3x=7 | | 5x+9=7x-9+180 | | 5-x+3x=25 | | 4(y−2)−3y=−6 | | 6+7x-5x=22 | | 5+3x+6x=50 | | x/3-1/4=64x-3=72 | | 10-k=3.4 | | x/3-1/4=6 | | 9-5+3x=-6-5x | | -3n+2=≥-4n-3 | | n-6/3=5 | | 2x+1=2048 | | -8x=4=8x+7-3 | | 4.6p-28=3.2p=14 | | x^2-2x-12=-2x+4 |

Equations solver categories