3+20/n2=13

Simple and best practice solution for 3+20/n2=13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3+20/n2=13 equation:



3+20/n2=13
We move all terms to the left:
3+20/n2-(13)=0
Domain of the equation: n2!=0
n^2!=0/
n^2!=√0
n!=0
n∈R
We add all the numbers together, and all the variables
20/n2-10=0
We multiply all the terms by the denominator
-10*n2+20=0
We add all the numbers together, and all the variables
-10n^2+20=0
a = -10; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-10)·20
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{2}}{2*-10}=\frac{0-20\sqrt{2}}{-20} =-\frac{20\sqrt{2}}{-20} =-\frac{\sqrt{2}}{-1} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{2}}{2*-10}=\frac{0+20\sqrt{2}}{-20} =\frac{20\sqrt{2}}{-20} =\frac{\sqrt{2}}{-1} $

See similar equations:

| 8−1/5x=1/10x+10 | | 17x−17=15x+1 | | 1.4(x-2)=9.3 | | 12=76+x | | 17x−10=15x+2 | | 18=56+x | | 8x+19=-13 | | 25/n5+8=33 | | X=3y+75-120 | | 14-3n+6=14 | | 12s-12=10s+12 | | 2/5-6/5=1/3y-5/3y | | -2/5-(6/5)=1/3y-(5/3y) | | 9+3x=15x | | 9+3x=15+3x | | 3x-3=15+x | | 1.4÷x+0.8=-1.2 | | 3x-14=5x+5 | | Y=25x-200 | | 6x+9=-32-2x | | Y=x-170 | | 4v+18=8v-102 | | X^3-7x^2-36=0 | | 7y-8+2y+8=180 | | 4(x-2)(7x+5)=0 | | (4v+18)+(6v-42)=180 | | 10v-24=180 | | 0.8x*x=119.2 | | 6(5a-1)-5a-94=0 | | -286-5a=6(5a-1) | | -19.5+1.1a=-1.5+4.7a | | 4.7a-10.8=1.1a |

Equations solver categories