3+3/2v+4=4v-5/2v

Simple and best practice solution for 3+3/2v+4=4v-5/2v equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3+3/2v+4=4v-5/2v equation:



3+3/2v+4=4v-5/2v
We move all terms to the left:
3+3/2v+4-(4v-5/2v)=0
Domain of the equation: 2v!=0
v!=0/2
v!=0
v∈R
Domain of the equation: 2v)!=0
v!=0/1
v!=0
v∈R
We add all the numbers together, and all the variables
3/2v-(+4v-5/2v)+3+4=0
We add all the numbers together, and all the variables
3/2v-(+4v-5/2v)+7=0
We get rid of parentheses
3/2v-4v+5/2v+7=0
We multiply all the terms by the denominator
-4v*2v+7*2v+3+5=0
We add all the numbers together, and all the variables
-4v*2v+7*2v+8=0
Wy multiply elements
-8v^2+14v+8=0
a = -8; b = 14; c = +8;
Δ = b2-4ac
Δ = 142-4·(-8)·8
Δ = 452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{452}=\sqrt{4*113}=\sqrt{4}*\sqrt{113}=2\sqrt{113}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{113}}{2*-8}=\frac{-14-2\sqrt{113}}{-16} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{113}}{2*-8}=\frac{-14+2\sqrt{113}}{-16} $

See similar equations:

| (-3)+2x=x-1 | | -3x=40=10 | | (-7x)+1=(-8x)+7 | | |x-5|+2=5 | | -4(-7u+6)-9u=5(u-6)-1 | | 10=54-x | | 4x^2+160x-156=0 | | 8+50x=12+25x | | (-5)-5x=(-11)-8x | | 4m+2m+2=3m-7 | | 26x-7+10x+7=180 | | 4(w+7)=8w-4 | | |x-3|+2=5 | | -6+x/5=-41 | | (-6x)+4=(-16)-x | | 2h=25h | | 6y-2(y-2)+5=0 | | 18-1/2(2s+18)=-2s-6 | | -5n=n/2 | | -k-4k=15 | | 49-y=7/36y | | 13p+108=285 | | 2.3x-5+3x+8=19.5 | | x2+9=90 | | (-7)-3x=(-4x)-7 | | 36^7=6^x | | 7p+4=29=2p | | 13p=108 | | 1/2(8x+32)=x^2+4x | | 4x-43+3x=10(3x-2) | | 2w+8=6 | | 3x-4=8(x/5-1) |

Equations solver categories