3+3/2x+4=4x+4x-5/2x

Simple and best practice solution for 3+3/2x+4=4x+4x-5/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3+3/2x+4=4x+4x-5/2x equation:



3+3/2x+4=4x+4x-5/2x
We move all terms to the left:
3+3/2x+4-(4x+4x-5/2x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
3/2x-(+8x-5/2x)+3+4=0
We add all the numbers together, and all the variables
3/2x-(+8x-5/2x)+7=0
We get rid of parentheses
3/2x-8x+5/2x+7=0
We multiply all the terms by the denominator
-8x*2x+7*2x+3+5=0
We add all the numbers together, and all the variables
-8x*2x+7*2x+8=0
Wy multiply elements
-16x^2+14x+8=0
a = -16; b = 14; c = +8;
Δ = b2-4ac
Δ = 142-4·(-16)·8
Δ = 708
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{708}=\sqrt{4*177}=\sqrt{4}*\sqrt{177}=2\sqrt{177}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{177}}{2*-16}=\frac{-14-2\sqrt{177}}{-32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{177}}{2*-16}=\frac{-14+2\sqrt{177}}{-32} $

See similar equations:

| 11.9-0.8x=4.5 | | x+11=37x= | | 2.5=47.5-x | | √3x+5=4x | | 4(x+10)=4−5x | | |9x+5|=41 | | 4x-1=2x+391 | | 3x+13+2x+5=17 | | ∣4x−8∣=15 | | 27+9x=-12+11x-12 | | 0=78.4t+4.9(t)^2 | | 9+1/12=k/9 | | 2.5p=47.5 | | -12+52=-4(x+5) | | 87=-3m | | 180=4x-39 | | 4x-35=2x+5 | | -8w-6=2(w+7) | | √15x-24=x+2 | | 12=5x−13x−44 | | (y*60)/3.2=292 | | 0.8/10=x/100 | | (y*6)/3.2=292 | | x+2/3=14/17 | | x+3÷2=8 | | 6(x+6=84 | | 2x+20=169 | | x+6+12x-13=19 | | 2/x=3.6 | | -52=3-8n | | 4.2y=16.4 | | 3x+19=169 |

Equations solver categories