3+4x(7-2x)=-1-(x+5)

Simple and best practice solution for 3+4x(7-2x)=-1-(x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3+4x(7-2x)=-1-(x+5) equation:



3+4x(7-2x)=-1-(x+5)
We move all terms to the left:
3+4x(7-2x)-(-1-(x+5))=0
We add all the numbers together, and all the variables
4x(-2x+7)-(-1-(x+5))+3=0
We multiply parentheses
-8x^2+28x-(-1-(x+5))+3=0
We calculate terms in parentheses: -(-1-(x+5)), so:
-1-(x+5)
determiningTheFunctionDomain -(x+5)-1
We get rid of parentheses
-x-5-1
We add all the numbers together, and all the variables
-1x-6
Back to the equation:
-(-1x-6)
We get rid of parentheses
-8x^2+28x+1x+6+3=0
We add all the numbers together, and all the variables
-8x^2+29x+9=0
a = -8; b = 29; c = +9;
Δ = b2-4ac
Δ = 292-4·(-8)·9
Δ = 1129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-\sqrt{1129}}{2*-8}=\frac{-29-\sqrt{1129}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+\sqrt{1129}}{2*-8}=\frac{-29+\sqrt{1129}}{-16} $

See similar equations:

| 7(n+4)=45 | | 1x+8=5x-5-3x | | 11/2n-2=8 | | x+8=5x-5-3x | | -73=4m=3 | | (x-44)+49=180 | | –4p–16=4p | | 9(x+7)=5(x+5) | | 7x-20=4x+13 | | 3x-4=4-(-5x+6) | | y4-10=-14 | | 21/4m+6=7 | | .5(2p–3)–3(3p–7)=5 | | -9=x/9-2 | | 7y+6+50+14y=180 | | 3p=7p–16 | | 3x/7=12/7 | | 15/7=-x | | 3p=7p–16 | | 3x+6=2x+5x-10 | | 4(y/3)=3(2/4) | | 2x+7+6x=-9 | | .b÷12=5;b=60 | | 2v+6=17 | | 30+x=18- | | 6q-4=5 | | 5x-12+11=8 | | 35x+5=100 | | 22+12k=-14 | | x^2+6x+0.5=0 | | 4x+10+11=20 | | 5u+7+11=12 |

Equations solver categories