If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3.00x+0.50=6/00x+0.20
We move all terms to the left:
3.00x+0.50-(6/00x+0.20)=0
Domain of the equation: 00x+0.20)!=0We add all the numbers together, and all the variables
x∈R
3.00x-(6/00x+0.2)+0.50=0
We add all the numbers together, and all the variables
3.00x-(6/00x+0.2)+0.5=0
We get rid of parentheses
3.00x-6/00x-0.2+0.5=0
We multiply all the terms by the denominator
(3.00x)*00x-(0.2)*00x+(0.5)*00x-6=0
We add all the numbers together, and all the variables
(+3.00x)*00x-(0.2)*00x+(0.5)*00x-6=0
We multiply parentheses
0x^2-0x+0x-6=0
We add all the numbers together, and all the variables
x^2-6=0
a = 1; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·1·(-6)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*1}=\frac{0-2\sqrt{6}}{2} =-\frac{2\sqrt{6}}{2} =-\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*1}=\frac{0+2\sqrt{6}}{2} =\frac{2\sqrt{6}}{2} =\sqrt{6} $
| 5a/6-7/12+3a/4=-22/12 | | 76+x=346 | | q+14=8(q+7) | | g=109-4g+1 | | 7w+5=8w-15-5w | | 11x-44=5x+34 | | (-2.7)3x-2=(-2.7)4x+5 | | 4(w-16)=12 | | 3x+7x5x-2=61 | | 2(4x+5)=7 | | x-56=38 | | 2(4-b)=-20 | | 12-2x=30* | | 6(t-1)=9(t-4) | | 5(x+7)=1 | | 2-2q=4q-8q+2 | | -2v+1=3 | | f–(-9)=16 | | 2(x-1)=2x-9 | | 5(n+7)=45 | | 5/3+3n=4/5+15 | | 2.1x+3.3=0.9x+5.3 | | 0.2x+0.1=0.9x-1.3 | | 10(2x-3)-8(3x+10)=6x+3 | | 28+5y-28=180 | | 5+3x+1=55 | | 4/5x-1/4x=87 | | 4y−4=8 | | 83-(3c+4)=4(c+7)+c | | 8–3x=8 | | 9x-35=-2(4-6x) | | 10a-4+5-2a=9 |