If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3.4(k-3)+7=2k-1(k+8)
We move all terms to the left:
3.4(k-3)+7-(2k-1(k+8))=0
We multiply parentheses
3.4k-(2k-1(k+8))-10.2+7=0
We calculate terms in parentheses: -(2k-1(k+8)), so:We add all the numbers together, and all the variables
2k-1(k+8)
3.4k-(2k-1(k+8))-3.2=0
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
We calculate terms in parentheses: -(2k-1(k+8)), so:
2k-1(k+8)
See similar equations:
| 20+4×4=x | | n+(2n+20)+(4n-20)=180 | | 4p/7-0.6=3.6 | | 2k²+8k+1=0 | | 2+2(x-2)=0 | | 206.36=7(0.09m+23.70+0.20(23.70) | | x=-6.7+0.8X | | (x-x2)(x-5)=0 | | 8+11(y-2)=-2+13(y+4)+10 | | 2/x=1/2.5 | | 3x(2)=5x+14 | | -5(3-r)=8 | | (-12)w=-16 | | X(x+8)=106 | | 12r=8;r=16 | | 1/2r=8;r=16 | | X+(x-3)+(x-65)=200 | | m/3=6;m=18 | | 25=k5;k= | | f+15=9;f= | | 46=14+x;x= | | 7y=56;y= | | 200x+1000(x-3)+250(x-3)=5000 | | 7y=56;y | | x-9=23;x= | | 2/5(x+5/2)=20 | | 10x+5x-10=110 | | x∙1/5=60 | | 9(w+16)= | | 4x+3+8=36 | | 15x+6(180-x)=(180) | | 9+4v-11v=18-7v |
Equations solver categories
- Equations solver - equations involving one unknown
- Quadratic equations solver
- Percentage Calculator - Step by step
- Derivative calculator - step by step
- Graphs of functions
- Factorization
- Greatest Common Factor
- Least Common Multiple
- System of equations - step by step solver
- Fractions calculator - step by step
- Theory in mathematics
- Roman numerals conversion
- Tip calculator
- Numbers as decimals, fractions, percentages
- More or less than - questions
- How to solve complicated linear equation