If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3.5x+-20+1/2x=40-2x
We move all terms to the left:
3.5x+-20+1/2x-(40-2x)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
3.5x+1/2x-(-2x+40)-20+=0
We add all the numbers together, and all the variables
3.5x+1/2x-(-2x+40)=0
We get rid of parentheses
3.5x+1/2x+2x-40=0
We multiply all the terms by the denominator
(3.5x)*2x+2x*2x-40*2x+1=0
We add all the numbers together, and all the variables
(+3.5x)*2x+2x*2x-40*2x+1=0
We multiply parentheses
6x^2+2x*2x-40*2x+1=0
Wy multiply elements
6x^2+4x^2-80x+1=0
We add all the numbers together, and all the variables
10x^2-80x+1=0
a = 10; b = -80; c = +1;
Δ = b2-4ac
Δ = -802-4·10·1
Δ = 6360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6360}=\sqrt{4*1590}=\sqrt{4}*\sqrt{1590}=2\sqrt{1590}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-2\sqrt{1590}}{2*10}=\frac{80-2\sqrt{1590}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+2\sqrt{1590}}{2*10}=\frac{80+2\sqrt{1590}}{20} $
| 126=3x+87 | | 6(x+19)=1014 | | 2x+5(x+1)=-9 | | -10=3x+7x | | 1/6y+y=25 | | -6x+(-24)=30 | | 120=6x+60 | | a+7=73 | | n-5-7=-11 | | 0=8z=8 | | 6x-(2x-1)=9x+2(2x-x) | | 1/5(15x+20)=3x+4 | | 3/4x-3=1/4x+3 | | 6x+4x=-90 | | 18=7r-r | | 2x-11=2x+9 | | 6^3x+1=30 | | -x+6-9x=-14 | | 2,5x+12=912 | | 6p=-66 | | 6(-2k+2)=84 | | 3x+1/4=2x+2/4 | | 4x-2(7-3x)+5=5=0 | | -6=-5x+3x | | 5=-5r+4r | | 8+x/15=9 | | (4y+8)×5+7y=20y-9+7+14y | | 6u-30=3u | | v/31=7 | | 4x-33=5x-49 | | 5/13p=-20/19 | | -6=a+a |