If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3.6(7.5-x)+3.6(7.5+x)=(7.5-x)(7.5+x)
We move all terms to the left:
3.6(7.5-x)+3.6(7.5+x)-((7.5-x)(7.5+x))=0
We add all the numbers together, and all the variables
3.6(-1x+7.5)+3.6(x+7.5)-((-1x+7.5)(x+7.5))=0
We multiply parentheses
-3.6x+3.6x-((-1x+7.5)(x+7.5))+27+27=0
We multiply parentheses ..
-((-1x^2-7.5x+7.5x+56.25))-3.6x+3.6x+27+27=0
We calculate terms in parentheses: -((-1x^2-7.5x+7.5x+56.25)), so:We add all the numbers together, and all the variables
(-1x^2-7.5x+7.5x+56.25)
We get rid of parentheses
-1x^2-7.5x+7.5x+56.25
We add all the numbers together, and all the variables
-1x^2+56.25
Back to the equation:
-(-1x^2+56.25)
-(-1x^2+56.25)+54=0
We get rid of parentheses
1x^2-56.25+54=0
We add all the numbers together, and all the variables
x^2-2.25=0
a = 1; b = 0; c = -2.25;
Δ = b2-4ac
Δ = 02-4·1·(-2.25)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-3}{2*1}=\frac{-3}{2} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+3}{2*1}=\frac{3}{2} =1+1/2 $
| 5x-2x=7x+2x-24 | | 8x-9=17+6x | | 5-(b-1)=3 | | 10d-12d=12 | | -15v+12v+-6=3 | | 1.5(2.5)+1.5(-2.5)=(1.5+1.5)v | | 17t-16t=9 | | 6^x-2=82 | | 4(4x+11)=19 | | 5^(x+6)=125 | | 15=100×3b | | 4x-7(2-3)=3x+6 | | 3w^2-w=234 | | k=2.8 | | -3p+4=7p-3 | | 53-x=11 | | 5/6x+2=4/5x-2 | | -4b-8=-6(6+3b) | | 7+6(m-5)=42 | | 3c-1238 c−2=32 c−12 | | (x+6)(x)=1 | | (w^2)-w-12=0 | | 17n-10-16n=7 | | 0.75(8b+40-1=4b+14 | | 36-(10n+40)=6 | | -t+4=0 | | -1=1.2x+10 | | m=-3(5,7) | | 6x^2+30x+9=0 | | -4=0-0.75x | | c=2(3.14)16 | | x(2x-9)=425 |