3.8n-13=1/4n+5

Simple and best practice solution for 3.8n-13=1/4n+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3.8n-13=1/4n+5 equation:



3.8n-13=1/4n+5
We move all terms to the left:
3.8n-13-(1/4n+5)=0
Domain of the equation: 4n+5)!=0
n∈R
We get rid of parentheses
3.8n-1/4n-5-13=0
We multiply all the terms by the denominator
(3.8n)*4n-5*4n-13*4n-1=0
We add all the numbers together, and all the variables
(+3.8n)*4n-5*4n-13*4n-1=0
We multiply parentheses
12n^2-5*4n-13*4n-1=0
Wy multiply elements
12n^2-20n-52n-1=0
We add all the numbers together, and all the variables
12n^2-72n-1=0
a = 12; b = -72; c = -1;
Δ = b2-4ac
Δ = -722-4·12·(-1)
Δ = 5232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5232}=\sqrt{16*327}=\sqrt{16}*\sqrt{327}=4\sqrt{327}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-4\sqrt{327}}{2*12}=\frac{72-4\sqrt{327}}{24} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+4\sqrt{327}}{2*12}=\frac{72+4\sqrt{327}}{24} $

See similar equations:

| X^2-400x-4800000=0 | | 582y+59y=72y+168-4 | | 582+59y=72y+268-4y | | -10x+9=-82 | | 1x÷3+8=2x | | 1x÷8=2x | | X^2+3x+450=0 | | X^2+3x-450=0 | | 10000=7x+x | | 1000=7x+x | | 120-64x=-x+348-14x | | 4x+5=2+x | | -11/5x=3 | | 120-42x=57x+114-14× | | -6(6x-4)=-36x+24 | | 5x+68*2=X+6 | | 36+47x+35-46-46x71=-99 | | -x+2×0=3 | | -21/5x=3 | | 2=(y-14)/2 | | 11a+10=3a-38 | | Y=0.5x³ | | 30/x+2x=17 | | 13x-13=176 | | 10-|4x|=3 | | |3x+1|-|x+9|=0 | | |3x+1|-|x-9|=0 | | −4=2x−6 | | 3x^2+42x+3=0 | | -8=-2n+2n | | 21-2x-6=7x-4x | | 48=103y-102y+7+42 |

Equations solver categories