3/(12c-4)=15c+15

Simple and best practice solution for 3/(12c-4)=15c+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/(12c-4)=15c+15 equation:



3/(12c-4)=15c+15
We move all terms to the left:
3/(12c-4)-(15c+15)=0
Domain of the equation: (12c-4)!=0
We move all terms containing c to the left, all other terms to the right
12c!=4
c!=4/12
c!=1/3
c∈R
We get rid of parentheses
3/(12c-4)-15c-15=0
We multiply all the terms by the denominator
-15c*(12c-4)-15*(12c-4)+3=0
We multiply parentheses
-180c^2+60c-180c+60+3=0
We add all the numbers together, and all the variables
-180c^2-120c+63=0
a = -180; b = -120; c = +63;
Δ = b2-4ac
Δ = -1202-4·(-180)·63
Δ = 59760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{59760}=\sqrt{144*415}=\sqrt{144}*\sqrt{415}=12\sqrt{415}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-12\sqrt{415}}{2*-180}=\frac{120-12\sqrt{415}}{-360} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+12\sqrt{415}}{2*-180}=\frac{120+12\sqrt{415}}{-360} $

See similar equations:

| 3(5y-11)=18y | | 72+4-4-14c=36 | | -2(8x-7)=30 | | 3(m-2)=2(m-6( | | p-0.3p=4.2 | | -6b+5=1-1/2 | | 3(x+9)-24=0 | | (3x-1)+x=180 | | 3m-3(-m+11)=-8(2m-11)+11 | | 7x-x=-3(-5x-7)+3(-2-2x) | | h/3+9=15 | | 1.88g-4=07.0 | | f-5=9 | | 7x=-3(-5x-7)+3(-2-2x) | | 9=8(n+4)+-7 | | -7=b-3= | | 6+2c-11+7c=10-10c-15+19c | | -3(u+1)-6=18 | | 7x-x=3(-5x-7)+3(-2-2x) | | K3^2+(k-1)3-1=0 | | -6x–7=-6x+2 | | 3x+7x+3=2(5x+3) | | 5f=5f=16=2f | | 20–6+4y=2−2y | | x-22=36 | | 7=h-6 | | –12d−12=–13d | | 3/4(x+1)-3x=1/4(2x-1) | | 70x+14=84 | | X-5=-(5-c) | | 8(k-6)+2(k+4)=7k-1-6 | | 3+4=(x+7) |

Equations solver categories