3/(4n-28)=2n

Simple and best practice solution for 3/(4n-28)=2n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/(4n-28)=2n equation:


D( n )

4*n-28 = 0

4*n-28 = 0

4*n-28 = 0

4*n-28 = 0 // + 28

4*n = 28 // : 4

n = 28/4

n = 7

n in (-oo:7) U (7:+oo)

3/(4*n-28) = 2*n // - 2*n

3/(4*n-28)-(2*n) = 0

3/(4*n-28)-2*n = 0

3/(4*n-28)+(-2*n*(4*n-28))/(4*n-28) = 0

3-2*n*(4*n-28) = 0

56*n-8*n^2+3 = 0

56*n-8*n^2+3 = 0

56*n-8*n^2+3 = 0

DELTA = 56^2-(-8*3*4)

DELTA = 3232

DELTA > 0

n = (3232^(1/2)-56)/(-8*2) or n = (-3232^(1/2)-56)/(-8*2)

n = (4*202^(1/2)-56)/(-16) or n = (-4*202^(1/2)-56)/(-16)

(n-((4*202^(1/2)-56)/(-16)))*(n-((-4*202^(1/2)-56)/(-16))) = 0

((n-((4*202^(1/2)-56)/(-16)))*(n-((-4*202^(1/2)-56)/(-16))))/(4*n-28) = 0

((n-((4*202^(1/2)-56)/(-16)))*(n-((-4*202^(1/2)-56)/(-16))))/(4*n-28) = 0 // * 4*n-28

(n-((4*202^(1/2)-56)/(-16)))*(n-((-4*202^(1/2)-56)/(-16))) = 0

( n-((-4*202^(1/2)-56)/(-16)) )

n-((-4*202^(1/2)-56)/(-16)) = 0 // + (-4*202^(1/2)-56)/(-16)

n = (-4*202^(1/2)-56)/(-16)

( n-((4*202^(1/2)-56)/(-16)) )

n-((4*202^(1/2)-56)/(-16)) = 0 // + (4*202^(1/2)-56)/(-16)

n = (4*202^(1/2)-56)/(-16)

n in { (-4*202^(1/2)-56)/(-16), (4*202^(1/2)-56)/(-16) }

See similar equations:

| 1/3(3x+12)=15 | | (5/p)-4=6 | | 9x/8=15/8 | | x^3+x+2=1600 | | solvex^2-10x+22=0 | | 3x-7u=20 | | 16b^2-68b-60=0 | | 2y+10=30 | | -(3z+4)=6z+2 | | 1/2=b/2 | | y^2-8y=-18 | | 12/7(x+h)-12/7x | | 24x-35=55-21x | | 13/6(8x+3/2)+7/2x=363/4 | | 2x^2-40x+9x^2= | | x^2-x+(1/2)=0 | | 3/-s+1=6/a+4 | | 1/2y-1/8=7 | | -(4a-7)-5a=4(y+1)-2 | | -133+10x=37 | | 10p+9-11-p=-4p+-8-6p-6 | | -4(y-7)+2(3y-1)= | | 4[2n-5]=3n+10 | | 9a+3b=39 | | 4x-20=32 | | -8x-(3x+6)=-4-x | | 11xy+2x= | | -32w=4 | | -6(-3x-5)=-6(-2x-3) | | 25x^2+70x+33=0 | | (4y-8)-(7y+6)= | | z^2+36=-19 |

Equations solver categories