3/(m+4)-4/m=6

Simple and best practice solution for 3/(m+4)-4/m=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/(m+4)-4/m=6 equation:



3/(m+4)-4/m=6
We move all terms to the left:
3/(m+4)-4/m-(6)=0
Domain of the equation: (m+4)!=0
We move all terms containing m to the left, all other terms to the right
m!=-4
m∈R
Domain of the equation: m!=0
m∈R
We calculate fractions
3m/(m^2+4m)+(-4m-16)/(m^2+4m)-6=0
We multiply all the terms by the denominator
3m+(-4m-16)-6*(m^2+4m)=0
We multiply parentheses
-6m^2+3m+(-4m-16)-24m=0
We get rid of parentheses
-6m^2+3m-4m-24m-16=0
We add all the numbers together, and all the variables
-6m^2-25m-16=0
a = -6; b = -25; c = -16;
Δ = b2-4ac
Δ = -252-4·(-6)·(-16)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{241}}{2*-6}=\frac{25-\sqrt{241}}{-12} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{241}}{2*-6}=\frac{25+\sqrt{241}}{-12} $

See similar equations:

| x^2-14/3x+49/9=16/9 | | x^2-14/3x+49/9=0 | | 7x-12+60+x=180 | | (t+5)^2=4 | | 3x+18)+66=180 | | 7x-12+60=180 | | 45+9x-17+80=180 | | 4z-14=-6 | | 44+9x+18+5x+20=180 | | 64+68+x=180 | | X^2-51x+50=0 | | X^3-51x^2+50x=0 | | 9x+2=-3x+5 | | −16x^2+149x+108=0 | | 4x-38=98 | | 2x+71.5=130 | | (5x+44)=(8x-13) | | 2x+9+5x-12+7x-41=180 | | m^-3=512 | | 0.49(x+2)=2 | | b+6+8=0 | | 57+x+19=180 | | 3x=21x+81 | | d+11=18 | | 12^x-2=72 | | 4012=p | | S(t)=2.5t | | (x-4)(3x+11)=0 | | 5=7f+8 | | 7^-x=49^x+9 | | x/2-1=14 | | 108+29+x=180 |

Equations solver categories