3/10x-12=4/5x-5

Simple and best practice solution for 3/10x-12=4/5x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/10x-12=4/5x-5 equation:



3/10x-12=4/5x-5
We move all terms to the left:
3/10x-12-(4/5x-5)=0
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
Domain of the equation: 5x-5)!=0
x∈R
We get rid of parentheses
3/10x-4/5x+5-12=0
We calculate fractions
15x/50x^2+(-40x)/50x^2+5-12=0
We add all the numbers together, and all the variables
15x/50x^2+(-40x)/50x^2-7=0
We multiply all the terms by the denominator
15x+(-40x)-7*50x^2=0
Wy multiply elements
-350x^2+15x+(-40x)=0
We get rid of parentheses
-350x^2+15x-40x=0
We add all the numbers together, and all the variables
-350x^2-25x=0
a = -350; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·(-350)·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*-350}=\frac{0}{-700} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*-350}=\frac{50}{-700} =-1/14 $

See similar equations:

| n=81(46-37) | | 7x-3(2x-4)=4(2-x) | | x9+4=22 | | -5(7-4x)=45 | | 4/3b–11=25 | | |3x^2-2x|=|6-2x^2| | | |3x^2-2x|=|6-x^2| | | 6-6x=1-4x | | 81/n+32=46 | | 9x-2(2x-3)=6+5x | | 43=7-9x | | 4y-5=y | | -16=4x+4x | | -9x-2-10x-8=-72 | | -6k-5k=-11 | | 2+3n-4=-14 | | 3/10p+4=0.5 | | 8x/6=42 | | 3(2x)+1=15 | | x-7=6(5-6x)1 | | 0.25n-2=3/4 | | -1/4k=-5 | | 15+x=54+9x | | 3(x+6)=4(+5) | | 15=1-6x-x | | -0.375c—11=13 | | 6n+2+6n=14 | | 4.5=b/5-2.1 | | x^2+x-3.91=0 | | 120+8x=36+9x | | -6=2x-21 | | -a/6+7=14 |

Equations solver categories