3/10y+12=4/5y-3

Simple and best practice solution for 3/10y+12=4/5y-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/10y+12=4/5y-3 equation:



3/10y+12=4/5y-3
We move all terms to the left:
3/10y+12-(4/5y-3)=0
Domain of the equation: 10y!=0
y!=0/10
y!=0
y∈R
Domain of the equation: 5y-3)!=0
y∈R
We get rid of parentheses
3/10y-4/5y+3+12=0
We calculate fractions
15y/50y^2+(-40y)/50y^2+3+12=0
We add all the numbers together, and all the variables
15y/50y^2+(-40y)/50y^2+15=0
We multiply all the terms by the denominator
15y+(-40y)+15*50y^2=0
Wy multiply elements
750y^2+15y+(-40y)=0
We get rid of parentheses
750y^2+15y-40y=0
We add all the numbers together, and all the variables
750y^2-25y=0
a = 750; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·750·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*750}=\frac{0}{1500} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*750}=\frac{50}{1500} =1/30 $

See similar equations:

| 10x-7=5x8 | | 4u=43=2u=7 | | 8x=-4x^2+20x | | -3+a=17 | | 85=x/1 | | 12−1/5​r=2r+1 | | 4x+17=x-1 | | (m-4.7)/3.5=1 | | 3p–1=5 | | 2.4+(-6.1)=x | | x-30=5(2x+)-9 | | 2(x-6)+5=-26 | | 5(1.15)^x=10 | | 5x^2+5=410 | | -25/(-25)=x | | 3/5m-2=13 | | x−30=5(2x+3)−9 | | -25/5=x | | 5(5-6)=x | | -85-(-60)=x | | x-30=5(2x+30)-9 | | -40/(-12-8)=x | | n+14=25= | | 3c-7c+4=-12 | | −3x+4=2x-6 | | 2x+5+x=2(3x=3) | | 4x^=4-x | | −3x+4=2x−6 | | g–24=50 | | 3x+5=96 | | 14)−3x+4=2x−6 | | 3b-9b=+7b |

Equations solver categories