3/10y+9=4/5y-1

Simple and best practice solution for 3/10y+9=4/5y-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/10y+9=4/5y-1 equation:



3/10y+9=4/5y-1
We move all terms to the left:
3/10y+9-(4/5y-1)=0
Domain of the equation: 10y!=0
y!=0/10
y!=0
y∈R
Domain of the equation: 5y-1)!=0
y∈R
We get rid of parentheses
3/10y-4/5y+1+9=0
We calculate fractions
15y/50y^2+(-40y)/50y^2+1+9=0
We add all the numbers together, and all the variables
15y/50y^2+(-40y)/50y^2+10=0
We multiply all the terms by the denominator
15y+(-40y)+10*50y^2=0
Wy multiply elements
500y^2+15y+(-40y)=0
We get rid of parentheses
500y^2+15y-40y=0
We add all the numbers together, and all the variables
500y^2-25y=0
a = 500; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·500·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*500}=\frac{0}{1000} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*500}=\frac{50}{1000} =1/20 $

See similar equations:

| X2+4x=-3 | | 5=x/4+-9 | | (-3+2y)+8=2y+5 | | 18-3m=36 | | 34y=12 | | x^2+8x+16=26 | | -4=7+y | | 9q+.2q=27.6 | | 5xX=30 | | 1.2x50=60 | | 2(x-2)=3x=6x+7-(x-3) | | 3x=x/2+7.5 | | -89+14x=3x+96 | | 9+13x=32 | | -12w=-23 | | 30+4x=6x | | ​32​​b+5=20−b | | -6x+7(1+-x)=-4(x+-4) | | -9m-2= | | 0.008x+0.09(9,000-x)=750 | | 5x²+13x-2=0 | | 3x-3=1x+8 | | 9-24w-6=w+25 | | 1/3(v-21/4)=411/12-21/2v | | 57+3x+12=90 | | 125=-x+293 | | 5r+6=–4r–8 | | 4b^2+8b-44=0 | | 25g+40=–15g–80 | | 54=170-w | | 7b+6=160 | | 25g+40=-15g–80 |

Equations solver categories