3/11a-11=7a+99

Simple and best practice solution for 3/11a-11=7a+99 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/11a-11=7a+99 equation:



3/11a-11=7a+99
We move all terms to the left:
3/11a-11-(7a+99)=0
Domain of the equation: 11a!=0
a!=0/11
a!=0
a∈R
We get rid of parentheses
3/11a-7a-99-11=0
We multiply all the terms by the denominator
-7a*11a-99*11a-11*11a+3=0
Wy multiply elements
-77a^2-1089a-121a+3=0
We add all the numbers together, and all the variables
-77a^2-1210a+3=0
a = -77; b = -1210; c = +3;
Δ = b2-4ac
Δ = -12102-4·(-77)·3
Δ = 1465024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1465024}=\sqrt{64*22891}=\sqrt{64}*\sqrt{22891}=8\sqrt{22891}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1210)-8\sqrt{22891}}{2*-77}=\frac{1210-8\sqrt{22891}}{-154} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1210)+8\sqrt{22891}}{2*-77}=\frac{1210+8\sqrt{22891}}{-154} $

See similar equations:

| -3/2x-7=-11 | | X^2-4x-372=0 | | 5/6=1/6+d | | Z+1.8-2.2=5(z-6.6) | | 2.5+y=-3.5 | | 5x+1=7x+8 | | 2g=4(-4+4g)=1-g | | -24=4y-4 | | 4w-16=52 | | x=+12 | | x/15=18/5 | | -5(5y-10)-y=-2(y-2) | | 2(w-7)=4 | | 2x/3+7x/6=5x+30 | | -4x-34+7x=14 | | 2x-6x+3=x-2+5 | | 2.7x^2-40x+22.5=0 | | 6x-5-2x=x+9+x | | 1/x=x/35 | | 9.9x+6.01=-10.1x+4.69 | | 24-3x=55 | | n+0.4n=70 | | 1+4n=2n+7 | | 7.7x-3.2=12.2 | | 2n-3n=12 | | -3/2w+4/3=5/6+1/3 | | -1/2z-7/8=1-3z-5/4 | | 4g^2+3g-10=0 | | x/2-3x/4=1 | | 18+.09m=8+.13m | | 3w+6=4w-5 | | X/3+3=7-x/3 |

Equations solver categories