If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/11x=9.x
We move all terms to the left:
3/11x-(9.x)=0
Domain of the equation: 11x!=0We add all the numbers together, and all the variables
x!=0/11
x!=0
x∈R
3/11x-(+9.x)=0
We get rid of parentheses
3/11x-9.x=0
We multiply all the terms by the denominator
-(9.x)*11x+3=0
We add all the numbers together, and all the variables
-(+9.x)*11x+3=0
We multiply parentheses
-99x^2+3=0
a = -99; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-99)·3
Δ = 1188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1188}=\sqrt{36*33}=\sqrt{36}*\sqrt{33}=6\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{33}}{2*-99}=\frac{0-6\sqrt{33}}{-198} =-\frac{6\sqrt{33}}{-198} =-\frac{\sqrt{33}}{-33} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{33}}{2*-99}=\frac{0+6\sqrt{33}}{-198} =\frac{6\sqrt{33}}{-198} =\frac{\sqrt{33}}{-33} $
| 5(u-6)-4=-6(-3u+4)-u | | 2=x×(20×40) | | 5e+32=1 | | 7t/2=21 | | 400=2a-244 | | 25/8/x=119/20 | | 400+244=2a | | (3x-4)=(4x-12) | | X(x-13)=-42 | | 2(3y+7+5)=196–16 | | 25x^2+5x+8=0 | | 6x+3x-2x=7+10 | | 5x-11*16=384 | | 5k-2=1 | | 4x-6x-3x=12 | | a^2-21=-4a | | 2677667787654433457789=977666556654544444444557x533345676555 | | 5x-11*16=38.4*10 | | 25—4y=6y=14 | | 233/4x=7 | | -10-3y-5=0 | | 5c=2/32/3 | | 2-3b+6b-3(b-2)= | | 6p+5=2p+3 | | 2y^2-26y+60=0 | | 1(-7x-15)=-72 | | 5(-11x+4)=41 | | 4(3w-2)=8(2w+13) | | 2x²+3x-126=0 | | x^2+x=−9x−16 | | |2x-1|+|3x-5|=0 | | 4÷7n=20 |