3/2(1x)+6+1/2(1x)=15+2x

Simple and best practice solution for 3/2(1x)+6+1/2(1x)=15+2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/2(1x)+6+1/2(1x)=15+2x equation:



3/2(1x)+6+1/2(1x)=15+2x
We move all terms to the left:
3/2(1x)+6+1/2(1x)-(15+2x)=0
Domain of the equation: 21x!=0
x!=0/21
x!=0
x∈R
We add all the numbers together, and all the variables
3/21x+1/21x-(2x+15)+6=0
We get rid of parentheses
3/21x+1/21x-2x-15+6=0
We multiply all the terms by the denominator
-2x*21x-15*21x+6*21x+3+1=0
We add all the numbers together, and all the variables
-2x*21x-15*21x+6*21x+4=0
Wy multiply elements
-42x^2-315x+126x+4=0
We add all the numbers together, and all the variables
-42x^2-189x+4=0
a = -42; b = -189; c = +4;
Δ = b2-4ac
Δ = -1892-4·(-42)·4
Δ = 36393
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-189)-\sqrt{36393}}{2*-42}=\frac{189-\sqrt{36393}}{-84} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-189)+\sqrt{36393}}{2*-42}=\frac{189+\sqrt{36393}}{-84} $

See similar equations:

| 8x+4(x+4)=12x+16 | | 4(x-6)+8x=5(x-4) | | 4x+(x+60)=180 | | 23=-4m+2+m* | | 5v-10=-2v+39 | | -3+3s=3s-3 | | 3x-6=115 | | 8x−1=4(2x−1) | | 5x+2+4x-8x=7 | | 12−4w=−3w+5 | | P=1.75x+49 | | 7x−4=2(2x−2)+3x | | 3x/20=9 | | -5x-6=-6x+5 | | -5a+5-a=-13 | | (a/5)-18=2 | | 12x+16=4(2x+10) | | m+58=91 | | -9u-6=3(u-6) | | -7(2x+6)-4x=22-2x | | -15y-4y-20=16-17y | | -9w+20=-11w-20+8 | | 12x-5(2x-3)=2(x-7) | | 9(p-24)=-18 | | 10x-10+3x+14=60 | | 8s=22 | | –8+4d=1+5d | | x=11=21 | | 12=7y-6 | | 14-7+4x=9 | | 3x-6=100 | | 15+3=2x+7-x |

Equations solver categories