If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2(b)+b+(12b-90)+90(b+45)=540
We move all terms to the left:
3/2(b)+b+(12b-90)+90(b+45)-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+3/2b+(12b-90)+90(b+45)-540=0
We multiply parentheses
b+3/2b+(12b-90)+90b+4050-540=0
We get rid of parentheses
b+3/2b+12b+90b-90+4050-540=0
We multiply all the terms by the denominator
b*2b+12b*2b+90b*2b-90*2b+4050*2b-540*2b+3=0
Wy multiply elements
2b^2+24b^2+180b^2-180b+8100b-1080b+3=0
We add all the numbers together, and all the variables
206b^2+6840b+3=0
a = 206; b = 6840; c = +3;
Δ = b2-4ac
Δ = 68402-4·206·3
Δ = 46783128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{46783128}=\sqrt{4*11695782}=\sqrt{4}*\sqrt{11695782}=2\sqrt{11695782}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6840)-2\sqrt{11695782}}{2*206}=\frac{-6840-2\sqrt{11695782}}{412} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6840)+2\sqrt{11695782}}{2*206}=\frac{-6840+2\sqrt{11695782}}{412} $
| 4(n-3)=2n | | 5(2m+9=) | | 0.15-0.02(x+2)=0.03(3-x) | | 8(x+2)+3=3x+5(3+x) | | 4x+3x-139=43 | | 1/3(21x-9)-(x+7)=0 | | 9(2n+1)=8(7n+3)+4 | | -94+11x+2x=166 | | -6-17x=53 | | 6n=-3n+45 | | 53=-6-17x | | 6n=-3+45 | | 9x-24=3x-36 | | 15x+5=3(4x+2)+3x-1 | | 116-y=157 | | 3.1K-6.96=2.7k+6.6 | | -7/3y=21 | | 3.6x+2.1=-15.9 | | (x-3)/2+7=×-(5-×)/4) | | 7k^2-5k=0 | | 8(y+9)+y=4(y+5)+6 | | 4r+9=2r-9 | | 3(4x-3)=2(5x+1) | | 9x+10=6x-8 | | -5(6x-4)+3=-30x+23 | | -2x+6=54 | | 40x+5(1.5x)=815 | | 10=3m-(-7) | | X^2-5x=-96 | | .5(5-7s)=8-(4s+6) | | 13=2/3x-1 | | 5x-4+3x=4(x-1) |