If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2b+(b+45)+(2b-90)+b+90=540
We move all terms to the left:
3/2b+(b+45)+(2b-90)+b+90-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+3/2b+(b+45)+(2b-90)-450=0
We get rid of parentheses
b+3/2b+b+2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 10x-8=2(4x) | | x+2=8x-9 | | 18=33x=200 | | 32b+(b+45)+(2b-90)+b+90=540 | | -2-5x=-2 | | 5.2+v/7=-12.3 | | 10x-4+8x-14=180 | | 10y-8y-8=29.08 | | -x/5+2=4x-1 | | -(8-3x)+2=-2+2(2x-8) | | 5y+3+3y+5=10y-8 | | 3+2x=4x+9 | | 2m=8-4m=28 | | 0.06(y-6)+0.16y=0.04y-0.09(20) | | -9s−-11s=-4 | | -10(-7+3k)=1/5(100+50k) | | 3^x+2=5^2x+7 | | -70=-7(v+1) | | 24.25x+598=1752 | | 2x+26=x+3 | | -2=x-19.5/4.7 | | 34-5x=19+10x | | r/2+5=-7 | | -17p=-18p−12 | | N=m-3/5 | | 5(x-3)-6=-6(-3x+3)-x | | 9+3x3x3=12x9 | | -7(-6x+9)=-63+42x | | 303=3x+78 | | 3/4+1/4x=33/4 | | 2w/3=4 | | 18=3(x+2)-5x |