If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2b+(b+45)+90+(2b+90)+b=540
We move all terms to the left:
3/2b+(b+45)+90+(2b+90)+b-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+3/2b+(b+45)+(2b+90)-450=0
We get rid of parentheses
b+3/2b+b+2b+45+90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b+90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b+180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-630b+3=0
a = 8; b = -630; c = +3;
Δ = b2-4ac
Δ = -6302-4·8·3
Δ = 396804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396804}=\sqrt{4*99201}=\sqrt{4}*\sqrt{99201}=2\sqrt{99201}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-630)-2\sqrt{99201}}{2*8}=\frac{630-2\sqrt{99201}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-630)+2\sqrt{99201}}{2*8}=\frac{630+2\sqrt{99201}}{16} $
| (4x+1)^2=64 | | 1.50b+(b+45)+90+(2b+90)+b=540 | | m=311,12 | | -36=-4.5c | | 5x+2+3x+5+8x+8+5x+10+4x+15=540 | | -15x=-720 | | 3x(x-3)=5x2-10x | | 6=1+5t-5t^2 | | 0.5x=0.2x-3 | | 4x-20=3x-25 | | 3a+4a+1=15 | | 4x=4x+3+18 | | 5x-9+7x=10 | | 5-12x-1/4=1 | | 4(x-4)+7x=15+10x | | 2x+53(8−5x)=−3 | | -16t^2+100t-34=0 | | −5/2(3+5y)−3y=8 | | 5x-11=-55-6x | | −52(3+5y)−3y=8 | | 5x+35(3+2x)=8 | | 3(5)+2y+20=5(5)-2y+12 | | 6y-2/3=y | | (11x+8)+(8x+1)=107 | | 2/3x2+1=13 | | 3(5)+2y-5(5)-2y=-8 | | 6x26=6 | | 6x-7+4x=8 | | 3(x-5)+2x=16+4x | | 84x2+84x=0 | | -(2x-16)+7-7x=5 | | 2(x+3)-3x=2x+10 |